• Title/Summary/Keyword: soft clay ground

검색결과 387건 처리시간 0.025초

A Study of Soil Cement Properties by Using Soilcrete Stabilizer (소일크리트 고화재를 이용한 소일시멘트 특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Jin-Chun
    • Journal of the Korean GEO-environmental Society
    • /
    • 제2권4호
    • /
    • pp.73-81
    • /
    • 2001
  • Soil cement has been the typical material for the pavement and soft ground improvement. It has not been used up to date because that quality control is not easy and durability is not long enough for practical application. Since environmental influence is important, the application of high strength soil cement pavement has been increased for pedestrian roads of the garden, golf courses and sidewalks recently. In this study, the reference table was suggested for mixing design with appling statistical experimental technique to reference table. The reference table showed the relationship among improved strength, Soilcrete stabilizer, fine sand ratio and superplasticizer agent. The objective soil used in this study was the soft marine clay that is widely found in Korea, the compressive strength range of improved soil was between $50{\sim}150kg/cm^2$.

  • PDF

Applicability of Settlement Prediction Methods to Selfweight Consolidated Ground (자중압밀지반에 대한 침하예측기법의 적용성)

  • Jun, Sang-Hyun;Jeon, Jin-Yong;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • 제28권B호
    • /
    • pp.91-99
    • /
    • 2008
  • Applicability of existing methods of predicting consolidation settlement was assessed by analyzing results of centrifuge tests modelling self-weight consolidation of soft marine clay. From extensive literature review about self-weight consolidation of soft marine clays located in southern coast in Korea, constitutive relationships of void ratio-effective stress-permeability and typical self-weight consolidation curves with time were obtained by centrifuge model experiments. For the condition of surcharge loading, exact solution of consolidation settlement curve was obtained by Terzaghi's consolidation theory and was compared with the results predicted by currently available methods such as Hyperbolic method, Asaoka's method, Hoshino's method and ${\sqrt{S}}$ method. All methods were found to have their own inherent error to predict final consolidation settlement. From results of analyzing the self-weight consolidation with time by using those methods, Asaoka's method predicted the best. Hyperbolic method predicted relatively well in error range of 2~24% for the case of showing the linearity in the relationship between T vs T/S in the stage of consolidation degree of 60~90 %. For the case of relation curve of T vs $T/S^2$ showing the lineality after the middle stage, error range from Hoshino method was close to those from Hyperbolic method. However, Hoshino method is not able to predict the final settlement in the case of relation curve of T vs $T/S^2$ being horizontal. For the given data about self-weight consolidation after the middle stage, relation curve of T vs T/S from ${\sqrt{S}}$ method shows the better linearity than that of T vs $T/{\sqrt{s}}$ from Hyperbolic method.

  • PDF

Stratum Division Effect of Consolidation Settlement Formula Using Compression Index (압축지수를 이용한 압밀침하량 계산식의 압밀층 두께 분할효과)

  • Kim, Khi-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • 제11권2호
    • /
    • pp.49-54
    • /
    • 2012
  • The final consolidation settlement is important factor in soft ground improvement because of settlement management and completion time. The compression index, which is slope of primary consolidation curve, is commonly used for the calculation of final consolidation settlement in clay layer. The existing final consolidation settlement is calculated in total consolidation layer that is assumed as one layer. This paper describes analysis result of the acquired settlement, when the consolidation layer is divided as several layer. The consolidation settlement increased according to increase of the divided layer and then it is converged. This result was unrelated to surcharge load. The division effect of layer is very high when the surcharge load is less than the consolidation layer thickness. The division effect of layer is 1.2 to 1.4 in the general surcharge load, and this value can be apply as safety factor in the calculation of final consolidation settlement.

인천국제공항(IIA)의 다짐시험시공 결과 및 적용

  • 김영웅;김용철
    • Geotechnical Engineering
    • /
    • 제14권5호
    • /
    • pp.235-247
    • /
    • 1998
  • The IIA(Inchon International Airport) which will function as the HUB airport in the northeast Asian region in the upcoming 21th century will be located in the reclaimed land with sand dredged in the vicinity of project area between Youngjong and Yongyu islands. The original ground is composed of soft clayey silt (ML) or silty clay (CL). The reclaimed land is classified as being SP-SM and having poor gradation of Cu<3 which resulted in the anticipation for difficulty in compaction (compaction index = 0.6~0.7). This anticipation shedded light on the necessity of performing test compactions for the thickness of 3~5meters of reclaimed land, aiming at the discovery of effective and economical compaction method. Upon the call for the test compaction performance 4 different compaction methods have been selected for trial from the research done on the international and local academic papers, past experience with compaction works, and their written materials. For the precise interparetation of test results, the ground survey and measurements have been performed. The Hydraulic Hammer Compaction has been chosen as the most optimum in accordance withe the test results.

  • PDF

Study to Improve the Accuracy of Non-Metallic Pipeline Exploration using GPR Permittivity Constant Correction and Image Data Pattern Analysis (GPR 유전률 상수 보정과 영상자료 패턴분석을 통한 비금속 관로 탐사 정확도 확보 방안)

  • Kim, Tae Hoon;Shin, Han Sup;Kim, Wondae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제40권2호
    • /
    • pp.109-118
    • /
    • 2022
  • GPR (Ground Penetrating Radar), developed as a technology for geotechnical investigations such as sinkhole exploration, was used limitedly as a method to resolve undetectable lines in underground facility exploration. To improve the accuracy of underground facility data, the government made it possible to explore underground facilities using a non-metallic pipeline probe from July 2022. However, GPR has a problem in that the exploration rate is lowered in the soil with high moisture content, such as soft soil, such as clay layer, and there is a lot of variation in long-term accuracy. In this study, as a way to improve the accuracy of exploration considering the characteristics of GPR and the environment of underground facilities, we propose a GPR exploration method for underground facilities using permittivity constant correction and pattern analysis of GPR image data. Through this study, the accuracy of underground facility exploration and high reproducibility were derived as a result of field verification applying GPR frequency band and heterogeneous GPR.

A Prediction of Long-Term Settlement in Large Reclamated Sites Using Laboratory Consolidation Tests and GIS Techniques (실내압밀시험과 GIS 기법을 이용한 대규모 매립지역의 장기침하량 예측)

  • Park, Sa-Won;Kim, Hong-Taek;Park, Sung-Won;Baek, Seung-Cheol;Park, Sang-Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • 제7권3호
    • /
    • pp.5-19
    • /
    • 2006
  • The secondary consolidation settlement of soft clay is generally very little compared to the total settlement and occurs very slowly during long-term period. However the secondary consolidation settlement is comparatively large amount in organic and heavily compressed clay and is a very important engineering factor. In order to reduce residual settlements in reclaimed soft ground, the preloading method is often used. In this study, in order to determine reasonable long-term settlements of large reclaimed site, laboratory incremental loading consolidation tests and surcharging consolidation tests are performed. Sampling was done at Incheon area of west coast and Gwangyang area of south coast in Korea. The characteristics of secondary consolidation have obtained through laboratory tests and analyzed systematically to predict long-term settlements. Additionally, the location data and laboratory test results are correlated by using GIS(geographic information system). The secondary consolidation settlement of the site was predicted based on D/B and the operation technique and estimation technique of space of GIS.

  • PDF

Study on Optimum Design for Embankment Construction on Soft Ground Treated by SCP (SCP개량지반상에 성토시공 시 최적설계에 관한 연구)

  • Chae, Jong-gil;Park, Yeong-Mog;Jung, MinSu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제29권6C호
    • /
    • pp.251-258
    • /
    • 2009
  • In this study, the optimum design conditions for embankment construction on soft clay layer improved by soil compaction pile (SCP) are discussed by comparing the practical design method to the reliability design which is based on the loss function and advanced first order second moment (AFOSM) method. The results are summarized as follows; 1) the relationship between safety factor and failure probability becomes heavy exponentially, failure probability decreases rapidly till 1% approximately until safety factor is smaller than 1.2 and after then, failure probability decrease gradually along the increase of the safety factor. The design safety factor of 1.2 may be the critical value that has been established on considering both relationships appropriately, 2) the safety factor of 1.15 at the minimum expected total cost is a little smaller than the design safety factor of 1.2 and the failure probability is about 1%, 3) the sensitivities of the ratio of stress share and the internal friction angle of sand is larger than the variables related the undrained shear strength of soft layer. This result means that the distribution characteristic of n and ${\phi}$ influences on the stability analysis considerably and they should be considered necessarily on stability analysis of embankment on soft layer improved by SCP, 4) new failure points of the input variables at the design safety factor of 1.2(below failure probability of 0.1~0.3%) is far 1~2 times of standard deviation from the initial design values of themselves.

Centrifuge Model Test on the Bearing Capacity and Failure Mechanism of Composit Ground Improved with Slag Compaction Piles (슬래그 다짐말뚝으로 개량된 복합지반의 지지력 및 파괴메카니즘에 관한 원심모형실험)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2005
  • This paper presents experimental and numerical research results of centrifuge model tests performed to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. For centrifuge model tests, bearing capacity of composit soil improved with slag compaction piles, stress concentrations in-between pile and soft clay, settlement characteristics, and failure modes were investigated with slags differing in their relative density. A slag was found to be a good substitute for a sand since the slag compaction pile model showed a greater yield stress intensity up to $30\%$ than the sand compaction pile model under the identical testing conditions. Stress concentration ratio tended to increase with the relative density of slag pile and the clear shear lines in the piles were observed at the depth of $2D{\sim}2.5D$ (D=dia. of model pile) from the top of the piles after loading tests. Numerical analysis with a software of CRISP, implemented with the modified Cam-clay model, was carried out to simulate the results of centrifuge model test. Test results about characteristics of load-settlement curves and stress concentration ratio are in relatively good agreements with numerical estimations.

Unconfined Compressive Strength of Reduced Slag-Mixed Clay (환원슬래그 혼합점토의 일축압축강도 특성)

  • Cho, Minjae;Yoon, Yeowon;Kim, Jaeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • 제13권6호
    • /
    • pp.33-39
    • /
    • 2012
  • With the increase of steel production research interest on the recycling of slag as a by-product also increases steadily. Currently in Korea a lot of researches on blast-furnace slag have been made. However, the researches on the steel slag have been rarely made. Also, a research of steel slag, especially the use of oxidation furnace slag as aggregates for concrete progress, is performing actively, but the research results on the furnace slag are almost nothing. Recently, the research about the furnace slag as backfill material and embankment material confirmed the possibility of the clay soil amendment. Therefore, the object of this study is to review the possibility as civil engineering materials for soil improvement and to find the optimum mixture ratio of furnace slag. This research analyzed the ingredient component of the reduced slag by SEM, XRF, XRD tests and examined the strength increase using unconfined compression tests when the clay and reduced slag are mixed each other. Through this test, the definite strength increase is confirmed according to the mixture of the reduced slag and the possibility of soil improvement is also confirmed based on this result. The object of the study is both utilizing the by-product for civil engineering purpose and effective recycling by the application of the furnace slag for soil improvement.

Analysis of Piled Raft Interactions on Clay with Centrifuge Test (원심모형실험을 통한 점토지반에서의 말뚝지지 전면기초 상호작용)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • 제28권9호
    • /
    • pp.57-67
    • /
    • 2012
  • In the design for piled rafts, the load capacity of the raft is in general ignored and the load capacities of pile are only considered for the estimation of the total load carrying capacity of the piled raft. The axial resistance of piled raft is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, acts as a key element in the design for piled rafts. In this study, a series of centrifuge model tests has been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) at the stiff and soft clays. From the test results, it is observed that the interactions of piles, soil, and raft has little influences on the load capacities of piles and raft in piled rafts compared with the load capacities of group piles and raft at the same clay soil condition.