• 제목/요약/키워드: sodium sulfate attack

검색결과 33건 처리시간 0.024초

알칼리 활성 슬래그 기반 무시멘트 콘크리트의 장기 내구성 평가 (Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag)

  • 이현진;이석진;배수호;권순오;이광명;정상화
    • 한국건설순환자원학회논문집
    • /
    • 제4권2호
    • /
    • pp.149-156
    • /
    • 2016
  • 이 연구의 목적은 알칼리 활성 슬래그 기반 무시멘트 콘크리트의 염소이온 침투 및 황산염 침투 저항성과 같은 장기 내구성을 평가하는 것이다. 이를 위하여 물-결합재비에 따라 원주형 및 각주형의 무시멘트 콘크리트를 제작한 후, 이들에 대해서 재령 28일부터 365일까지 NT BUILD 492 및 JSTM C 7401 각각에 따라 장기 염소이온 침투 및 황산염 침투 저항성을 평가하였다. 그 결과, 무시멘트 콘크리트의 장기 염소이온 침투 및 황산염 침투 저항성은 물-결합재비에 관계 없이 OPC 콘크리트보다 크게 개선되는 것으로 나타나, 무시멘트 콘크리트의 장기 내구성은 매우 우수한 것으로 입증되었다.

황산염환경에 노출된 알카리프리계 급결제 사용 시멘트경화체의 성능저하 (Deterioration of Cement Matrix with Alkali-free Accelerator Exposed to Sulfate Media)

  • 이승태;;김성수;김동규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.277-280
    • /
    • 2006
  • This paper presents the findings on the sulfate resistance of mortar specimens with or without alkali-free accelerator exposed to sodium sulfate solution for 270 days. Test results confirms a negative effect of alkali-free accelerator on the sulfate deterioration. Additionally, the influences of exposure concentration and temperature of sulfate solution on expansion were investigated. Especially, at a high concentration of solution a significant expansion of mortar specimens with alkali-free accelerator was observed. Further, low temperature also promoted the deterioration of the cement system due to sulfate attack.

  • PDF

Sulfate Resistance of Cement Matrix Containing Limestone Powder

  • 문한영;정호섭;이승태;김종필
    • 콘크리트학회논문집
    • /
    • 제16권3호
    • /
    • pp.433-440
    • /
    • 2004
  • In order to improve the performance of concrete, generally, modern cements often incorporate several mineral admixtures. In this study, the experimental included the flow value, air content of mortar containing limestone powder and length change and compressive strength of mortar specimen immersed in sulfate solutions. From the experimental results, the limestone powder cement matrices improved the physical properties and sulfate resistance of cement matrices at $10\%$ replacement ratio of limestone powder. The $30\%$ replacement ratio of limestone powder was significantly deteriorated in sodium sulfate solution. Irrespective of fineness levels of limestone powder, length change and SDF of mortar specimens with only $10\%$ replacement was much superior to the other replacements.

부순모래를 사용한 시멘트 모르타르의 화학적 침해 저항 특성 (Chemical Attack Resistance Characteristics of Cement Mortars U sing in Crushed Sand)

  • 김강민;백동일;김명식;장희석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.519-522
    • /
    • 2005
  • As this study is to test effects of chemical attack on deterioration of cement mortars using in crushed sand. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of slica fume and fly ash(up to $15\%$ and $50\%$ by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of slica fume and fly ash was performed.

  • PDF

실리카퓸을 혼합한 시멘트 콘크리트의 역학적 특성 및 내구성 (Mechanical Properties and Durability of Cement Concrete Incorporating Silica Fume)

  • 이승태;이승헌
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.412-418
    • /
    • 2010
  • This paper presents the results of experimental work on both mechanical properties and durability of concrete or mortar incorporating silica fume. The aim of this study was to investigate the effect of replacement of silica fume on the performance of hardened concrete or mortar. The replacement levels of silica fume that replaced cement in this work were 0%, 5%, 10% and 15%, respectively. The results of this study indicate that both mechanical properties and durability of concrete are greatly dependent on the replacement levels of silica fume. As the replacement level of silica fume increased, the mechanical properties including compressive and flexural strengths, and static modulus of elasticity were proportionally enhanced. Furthermore, it was found that silica fume had some beneficial effects on the resistances to both chloride ions penetration and sodium sulfate attack. However, it exhibited poor resistances to both freezing-thawing action and magnesium sulfate attack.

Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks

  • Alzeebaree, Radhwan;Gulsan, Mehmet Eren;Nis, Anil;Mohammedameen, Alaa;Cevik, Abdulkadir
    • Steel and Composite Structures
    • /
    • 제29권2호
    • /
    • pp.201-218
    • /
    • 2018
  • In this study, the effects of magnesium sulfate on the mechanical performance and the durability of confined and unconfined geopolymer concrete (GPC) specimens were investigated. The carbon and basalt fiber reinforced polymer (FRP) fabrics with 1-layer and 3-layers were used to evaluate the performances of the specimens under static and cyclic loading in the ambient and magnesium sulfate environments. In addition, the use of FRP materials as a rehabilitation technique was also studied. For the geopolymerization process of GPC specimens, the alkaline activator has selected a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) with a ratio ($Na_2SiO_3/NaOH$) of 2.5. In addition to GPC specimens, an ordinary concrete (NC) specimens were also produced as a reference specimens and some of the GPC and NC specimens were immersed in 5% magnesium sulfate solutions. The mechanical performance and the durability of the specimens were evaluated by visual appearance, weight change, static and cyclic loading, and failure modes of the specimens under magnesium sulfate and ambient environments. In addition, the microscopic changes of the specimens due to sulfate attack were also assessed by scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that geopolymer specimens produced with nano-silica and fly ash showed superior performance than the NC specimens in the sulfate environment. In addition, confined specimens with FRP fabrics significantly improved the compressive strength, ductility and durability resistance of the specimens and the improvement was found higher with the increased number of FRP layers. Specimens wrapped with carbon FRP fabrics showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabrics. Both FRP materials can be used as a rehabilitation material in the sulfate environment.

알칼리 활성화 결합재 활용 모르타르의 황산염 침식 저항성 (Sulfate Resistance of Alkali-Activated Materials Mortar)

  • 박광민;조영근;이봉춘
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권2호
    • /
    • pp.94-101
    • /
    • 2016
  • 본 연구는 플라이애시 및 고로슬래그를 활용하여 알칼리 활성화 결합재로 제조된 모르타르 및 페이스트 샘플의 황산염 저항성을 평가하고 황산염 침투에 대한 고저항성 결합재를 제시하는 것이다. 이를 위하여 플라이애시 및 고로슬래그미분말 등의 광물질 혼화재를 결합재로 활용하여 고로슬래그미분말 치환율을 0, 30, 50 및 100%로 제작하였다. 규산나트륨 모듈 $Ms[SiO_2/Na_2O]$은 1.0, 1.5 및 2.0으로 조정하였으며, 초기 24시간 양생조건을 $23^{\circ}C$$70^{\circ}C$로 하고, 10% 황산나트륨 및 10% 황산마그네슘 용액에 각각 침지시키고, 황산염 저항성을 평가하기 위하여 압축강도, 질량변화율, 길이변화율 및 X선 회절분석을 측정하였다. 그 결과 고로슬래그미분말 치환량 및 Ms비가 증가할수록 재령 28일 압축강도 발현이 우수한 결과가 나타났다. 10% 황산나트륨에 침지한 경우에는 모든 시험조건에서 장기적인 강도발현과 질량 및 길이변화율이 작아 황산나트륨 침투에 대한 저항성이 우수한 것으로 나타났으나, 10% 황산마그네슘에 침지한 경우에는 장기적인 강도저하와 질량 및 길이변화가 크게 나타났으며, 그 경향은 고로슬래그미분말 치환량 및 Ms비가 증가할수록 현저하였다. 이것은 황산마그네슘의 경우 규산마그네슘수화물의 생성으로 인한 열화가 지배적으로 작용한 결과로 판단된다. 또한, X선 회절분석 결과 $MgSO_4$ 용액 침지에서의 알칼리 활성화 결합재의 팽창은 Gypsum($CaSO_4{\cdot}2H_2O$) 생성 반응에 의한 것으로 확인되었으며, 침지 6개월까지는 Gypsum의 생성이 지속적으로 증가되는 것을 알 수 있다.

광물질 혼화재료를 혼입한 부순모래 시멘트 모르터의 황산염 침해 저항성 (Sulfate Attack Resistance of Crushed Sand Cement Mortars Containing Mineral Admixture)

  • 김명식;장희석;백동일;김강민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.821-824
    • /
    • 2006
  • As this study is to estimate long term resistance of cement mortars using crushed sand under chemical attacks. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of silica fume and fly ash(up to 15% and 50% by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days, 90days, 180days, 365days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of silica fume and fly ash was performed.

  • PDF

황산염에 노출된 구조용 합성섬유와 라텍스 개질 시멘트 모르타르의 부착특성에 미치는 광물질 혼화재의 효과 (Effect of Mineral Admixture on Bond between Structural Synthetic Fiber and Latex Modified Cement Mortar under Sulfate Environments)

  • 김동현;이정우;박찬기
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.25-34
    • /
    • 2012
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to cement mortar by forming expansive hydration products due to the reaction between cement hydration products and acid and sulfate ions. In this study, the effect of fly ash and blast furnace slag on the bond performances of structural synthetic fiber in latex modified cement mortar under sulfate environments. Fly ash and blast furnace slag contents ranging from 0 % to 20 % are used in the mix proportions. The latex modified cement mortar specimens were immersed in fresh water, 8 % sodium sulfate ($Na_2SO_4$) solutions for 28 and 50 days, respectively. Pullout tests are conducted to measure the bond performance of structural synthetic fiber from latex modified cement mortar after sulfate environments exposure. Test results are found that the incorporation of fly ash and blast furnace slag can effectively enhance the PVA fiber-latex modified cement mortar interfacial bond properties (bond behavior, bond strength and interface toughness) after sulfate environments exposure. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results under sulfate environments.

광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구 (A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures)

  • 문한영;신국재;이창수
    • 콘크리트학회논문집
    • /
    • 제14권3호
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.