• 제목/요약/키워드: sodium nitroprusside

검색결과 199건 처리시간 0.028초

Nitric Oxide-Induced Autophagy in MC3T3-E1 Cells is Associated with Cytoprotection via AMPK Activation

  • Yang, Jung Yoon;Park, Min Young;Park, Sam Young;Yoo, Hong Il;Kim, Min Seok;Kim, Jae Hyung;Kim, Won Jae;Jung, Ji Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.507-514
    • /
    • 2015
  • Nitric oxide (NO) is important in the regulation of bone remodeling, whereas high concentration of NO promotes cell death of osteoblast. However, it is not clear yet whether NO-induced autophagy is implicated in cell death or survival of osteoblast. The present study is aimed to examine the role of NO-induced autophagy in the MC3T3-E1 cells and their underlying molecular mechanism. The effect of sodium nitroprusside (SNP), an NO donor, on the cytotoxicity of the MC3T3-E1 cells was determined by MTT assay and expression of apoptosis or autophagy associated molecules was evaluated by western blot analysis. The morphological observation of autophagy and apoptosis by acridine orange stain and TUNEL assay were performed, respectively. Treatment of SNP decreased the cell viability of the MC3T3-E1 cells in dose- and time-dependent manner. SNP increased expression levels of p62, ATG7, Beclin-1 and LC3-II, as typical autophagic markers and augmented acidic autophagolysosomal vacuoles, detected by acridine orange staining. However, pretreatment with 3-methyladenine (3MA), the specific inhibitor for autophagy, decreased cell viability, whereas increased the cleavage of PARP and caspase-3 in the SNP-treated MC3T3-E1 cells. AMP-activated protein kinase (AMPK), a major autophagy regulatory kinase, was activated in SNP-treated MC3T3-E1 cells. In addition, pretreatment with compound C, an inhibitor of AMPK, decreased cell viability, whereas increased the number of apoptotic cells, cleaved PARP and caspase-3 levels compared to those of SNP-treated MC3T3-E1 cells. Taken together, it is speculated that NO-induced autophagy functions as a survival mechanism via AMPK activation against apoptosis in the MC3T3-E1 cells.

GnRH-agonist에 의한 인간 과립-황체화 세포의 세포사멸과 PBR 단백질의 발현 (Apoptosis and Peripheral Benzodiazepin Receptor (PBR) Expression in Human Granulosa-Luteal Cells by GnRH-agonist)

  • 김세광;염윤희;윤정미;배상욱;양현원;조동제;윤용달;송찬호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권2호
    • /
    • pp.83-94
    • /
    • 2004
  • Objective: To investigate whether GnRH-agonist (GnRH-Ag) using in IVF-ET affects apoptosis of human granulosa-luteal cells and expression of peripheral benzodiazepine receptor (PBR) protein involved in the apoptosis of the cells. Methods: Granulosa-luteal cells obtained during oocyte retrieval were cultured and treated with $10^{-5}M$ GnRH-Ag. Apoptosis of the cells by the treatment was confirmed using DNA fragmentation analysis 24 h after culture. The presence of PBR protein within the cells was examined by immunofluorescence staining and the expression of the protein was analyzed by Western blotting. In addition, it was measured for progesterone and nitric oxide (NO) produced by granulosa-luteal cells after GnRH-Ag treatment. To evaluate the relationship between NO production and PBR expression, sodium nitroprusside (SNP) as a NO donor was added in media and investigated the expression of PBR protein by Western blotting. Results: Apoptosis increased in the granulosa-luteal cells 24 h after GnRH-Ag treatment, whereas the expression of PBR protein significantly decreased. Furthermore, the production of progesterone and nitric oxide (NO) by the cells significantly fell from 12 h after the treatment. In the results of Western blotting after SNP treatment, the expression of PBR protein increased in the treatment with SNP alone to the granulosa-luteal cells, but was suppressed in the treatment with GnRH-Ag and SNP. Additionally, the staining result of PBR protein in the cells showed the even distribution of it through the cell. Conclusion: These results demonstrate that GnRH-Ag treatment induces apoptosis, decreasing expression of PBR protein and NO production in human granulosa-luteal cells. The present study suggests that one of the apoptosis mechanism of human granulosa-luteal cells by GnRH-Ag might be a signal transduction pathway via NO and PBR.

NMDA Receptor and NO Mediate ET-1-Induced Behavioral and Cardiovascular Effects in Periaqueductal Gray Matter of Rats

  • Ryu, Jung-Su;Shin, Chang-Yell;Yang, Sung-Jun;Lee, Tai-Sang;La, Hyun-O;Song, Hyun-Ju;Yom, Yoon-Ki;Huh, In-Hoi;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • 제24권1호
    • /
    • pp.64-68
    • /
    • 2001
  • Endothelin-1 (ET-1 ), a novel and potent vasoconstrictor in blood vessel, is known to have some functions in the rat central nervous system (CNS), In order to investigate the central functions of ET-1 , ET-1 was administered to the periaqueductal gray area (PAC) of anesthetized rats to induce barrel rolling and increase the arterial blood pressure (ABP). ET-1 had a modulatory effect on central cardiovascular and behavioral control. The selective N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (3${u}m/ol/kg$, i.p.) blocked the ET-1 induced responses, and both the nitric oxide synthase (NOS) inhibitor L-NAME (N-nitro-L-arginine mIThyl-ester 1 nmol/rat) and the nitric oxide (NO) scavenger hemoglobin (15 nmol/rat) had similar effects in redtAcing the IT-1 (10 pmol/rat)-induced behavioral changes and ABP elevation. However, NO donor sodium nitroprusside (SNP 10${u}g$, 1${u}g/rat$) decreased the ET-1 induced ABP elevation, and recovered the ET-1 -induced barrel rolling effect that was reduced by MK-801. These results suggest that ET-1 might have neuromodulatory functions such as ABP elevation and barrel rolling induction in the PAG of the rats via the NMDA receptor and NO.

  • PDF

Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

  • Hong, Jeum Kyu;Kang, Su Ran;Kim, Yeon Hwa;Yoon, Dong June;Kim, Do Hoon;Kim, Hyeon Ji;Sung, Chang Hyun;Kang, Han Sol;Choi, Chang Won;Kim, Seong Hwan;Kim, Young Shik
    • The Plant Pathology Journal
    • /
    • 제29권4호
    • /
    • pp.386-396
    • /
    • 2013
  • Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide ($H_2O_2$) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion ($O_2{^-}$) and $H_2O_2$ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of $H_2O_2$ and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both $H_2O_2$ and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by $10^6$ and $10^7$ cfu/ml of R. solanacearum. $H_2O_2$- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by $H_2O_2$ and/or SNP with untreated control. Neither $H_2O_2$ nor SNP protect the tomato seedlings from the bacterial wilt, but $H_2O_2$ + SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that $H_2O_2$ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

당뇨병 백서의 복부 대동맥 운동성에 대한 Vit C 의 보호효과 (The Protective Effects of Ascorbic Acid on the Vascular Motilities in Streptozotocin- induced Diabetic Rat)

  • 김영진;양기민;조대윤;손동섭;이무열
    • Journal of Chest Surgery
    • /
    • 제34권7호
    • /
    • pp.515-523
    • /
    • 2001
  • 배경: 당뇨병 환자에서 사망률과 이환률의 원인은 70%이상 혈관계의 합병증에 기인한다. 이러한 합병증은 혈관 내피세포 이완 작용 이상과 연관되어 있으며 이는 oxygen free radical의 직접적인 독성으로 추정되어 본 연구는 당뇨를 유발시킨 백서 복부 대동맥 운동성에 대한 Vit C의 보호효과를 연구 목적으로 한다. 대상 및 방법: 백서 60마리를 실험군(n=33)과 대조군(n=27)으로 나누고 실험 군은 streptozotocin을 투여하여 당뇨를 유발시켰다. 각각 실험 군과 대조군을 ascorbic acid를 투여한 군과 투여하지 않은 군으로 세분한 후 ascorbic acid투여 직후, 6주, 9주, 12주후의 복부 대동맥 혈관근육의 운동성을 측정하였다. 결과: 대조군의 경우 6주째 복부 대동맥 절편에서 acetylcholine투여 후 정상적인 이완반응이 나타났으나 실험군의 경우 현저히 저하됨이 관찰되었다. 9, 12주 째 절편에서는 실험군 중 ascorbic acid투여군에서 acetylcholine에 의한 이완반응이 거의 대조군에서의 결과와 일치할 정도로 회복되었다. 결론: 이상의 결과로 당뇨병을 유발한 백서에서 내피세포 의존적인 장애가 나타남을 확인할 수 있었으며 이러한 장애는 ascorbic acid의 투여로 회복됨을 알 수 있었으며 그 효과는 항산화 작용에서 비롯된 것으로 생각되므로 ascorbic acid가 당뇨환자의 혈관성 질환에 대해 보호적 효과를 보일 수 있을 것으로 사료된다.

  • PDF

Melatonin Attenuates Nitric Oxide Induced Oxidative Stress on Viability and Gene Expression in Bovine Oviduct Epithelial Cells, and Subsequently Increases Development of Bovine IVM/IVF Embryos

  • Kim, J.T.;Jang, H.Y.;Park, C.K.;Cheong, H.T.;Park, I.C.;Yang, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.190-197
    • /
    • 2011
  • The objective of the present study was to elucidate the fundamental mechanism of bovine oviduct epithelial cell (BOEC) co-culture on developmental capacity of bovine IVM/IVF embryos and to determine whether or not melatonin acts as an antioxidant in BOEC culture and subsequent embryo development. These studies examined the effects of melatonin against NO-induced oxidative stress on cell viability, lipid peroxidation (LPO) and the expression of antioxidant genes (CuZnSOD, MnSOD and Catalase) or apoptosis genes (Bcl-2, Caspase-3 and Bax) during BOECs culture. We also evaluated the developmental rates of bovine IVM/IVF embryos with BOEC co-culture, which were pre-treated with melatonin ($1,000\;{\mu}M$) in the presence or absence of sodium nitroprusside (SNP, $1,000\;{\mu}M$) for 24 h. Cell viability in BOECs treated with SNP (50-$2,000\;{\mu}M$) decreased while melatonin addition (1-$1,000\;{\mu}M$) increased viability in a dose-dependent manner. Cell viability in melatonin plus SNP ($1,000\;{\mu}M$) gradually recovered according to increasing melatonin addition (1-$1,000\;{\mu}M$). The LPO products were measured by thiobarbituric acid (TBA) reaction for malondialdehyde (MDA). Addition of melatonin in BOEC culture indicated a dose-dependent decrease of MDA, and in the SNP group among BOECs treated with SNP or melatonin plus SNP groups MDA was significantly increased compared with SNP plus melatonin groups (p<0.05). In expression of apoptosis or antioxidant genes detected by RT-PCR, Bcl-2 and antioxidant genes were detected in melatonin or melatonin plus SNP groups, while Caspase-3 and Bax genes were only found in the SNP group. When bovine IVM/IVF embryos were cultured for 6-7 days under the BOEC co-culture system pre-treated with melatonin in the presence or absence of SNP, the highest developmental ability to blastocysts was obtained in the $1,000\;{\mu}M$ melatonin group. These results suggest that melatonin has an anti-oxidative effect against NO-induced oxidative stress on cell viability of BOECs and on the developmental competence of bovine IVM/IVF embryo co-culture with BOEC.

Protective Effect of BOEC Co-Culture System against Nitric Oxide on Development of Bovine IVM/IVF Embryos

  • Jang, Hyun-Yong;Jung, Yu-Sung;Li, Zheng-Yi;Yoon, Hyoung-Jong;Cheong, Hee-Tae;Kim, Jong-Taek;Park, Choon-Keun;Yang, Boo-Keun
    • Reproductive and Developmental Biology
    • /
    • 제32권3호
    • /
    • pp.167-173
    • /
    • 2008
  • Somatic cells such as oviduct epithelial cell, uterine epithelial cell, cumulus-granulosa cell and buffalo rat river cell has been used to establish an effective culture system for bovine embryos produced in in vitro. But nitric oxide (NO) metabolites secreted from somatic cells were largely arrested the development of bovine in vitro matured/ in vitro fertilized (IVM/IVF) embryos, suggesting that NO was induced the embryonic toxic substance into culture medium. The objective of this study was to investigate whether BOEC co-culture system can ameliorate the NO-mediated oxidative stress in the culture of bovine IVM/IVF embryos. Therefore, we evaluated the developmental rate of bovine IVM/IVF embryos under BOEC co-culture system in the presence or absence of sodium nitroprusside (SNP), as a NO donor, and also detected the expression of growth factor (TGF-$\beta$, EGF and IGFBP) and apoptosis (Caspase-3, Bax and Bcl-2) genes. The supplement of SNP over 5 uM was strongly inhibited blastocyst development of bovine IVM/IVF embryos than in control and 1 uM SNP group (Table 2). The developmental rates beyond morulae stages of bovine IVM/IVF embryos co-cultured with BOEC regardless of SNP supplement (40.4% in 5 uM SNP+ BOEC group and 65.1% in BOEC group) were significantly increased than those of control (35.0%) and SNP single treatment group (23.3%, p<0.05: Table 3). The transcripts of Bax and Caspase-3 genes were detected in all experiment groups (1:Isolated fresh cell (IFC), 2:Primary culture cell (PCC), 3:PCC after using the embryo culture, 4: PCC containing 5 uM SNP and 5: PCC containing 5 uM SNP after using the embryo culture), but Bcl-2 gene was not detected in IFC and PCC (Fig. 1). In the expression of growth factor genes, TGF-$\beta$ gene was found in all experimental groups, and EGF and IGFBP genes were not found in IFC and PCC (Fig. 2). These results indicate that BOEC co-culture system can increase the development beyond morula stages of bovine IVM/IVF embryos, possibly suggesting the alleviation of embryonic toxic substance like nitric oxide.

Comparative study of acute in vitro and short-term in vivo triiodothyronine treatments on the contractile activity of isolated rat thoracic aortas

  • Lopez, Ruth Mery;Lopez, Jorge Skiold;Lozano, Jair;Flores, Hector;Carranza, Rosa Angelica;Franco, Antonio;Castillo, Enrique Fernando
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권4호
    • /
    • pp.339-348
    • /
    • 2020
  • We aimed to characterize the participation of rapid non-genomic and delayed non-genomic/genomic or genomic mechanisms in vasoactive effects to triiodothyronine (T3), emphasizing functional analysis of the involvement of these mechanisms in the genesis of nitric oxide (NO) of endothelial or muscular origin. Influences of in vitro and in vivo T3 treatments on contractile and relaxant responsiveness of isolated rat aortas were studied. In vivo T3-treatment was 500 ㎍·kg-1·d-1, subcutaneous injection, for 1 (T31d) and 3 (T33d) days. In experiments with endothelium-intact aortic rings contracted with phenylephrine, increasing concentrations of T3 did not alter contractility. Likewise, in vitro T3 did not modify relaxant responses induced by acetylcholine or sodium nitroprusside (SNP) nor contractile responses elicited by phenylephrine or angiotensin II in endothelium-intact aortas. Concentration-response curves (CRCs) to acetylcholine and SNP in endothelium-intact aortic rings from T31d and T33d rats were unmodified. T33d, but not T31d, treatment diminished CRCs to phenylephrine in endothelium-intact aortic rings. CRCs to phenylephrine remained significantly depressed in both endothelium-denuded and endothelium-intact, nitric oxide synthase inhibitor-treated, aortas of T33d rats. In endothelium-denuded aortas of T33d rats, CRCs to angiotensin II, and high K+ contractures, were decreased. Thus, in vitro T3 neither modified phenylephrine-induced active tonus nor CRCs to relaxant and contractile agonists in endothelium-intact aortas, discarding rapid non-genomic actions of this hormone in smooth muscle and endothelial cells. Otherwise, T33d-treatment inhibited aortic smooth muscle capacity to contract, but not to relax, in an endothelium- and NO-independent manner. This effect may be mediated by delayed non-genomic/genomic or genomic mechanisms.

산화 스트레스에 대한 신선초 녹즙과 돌미나리 녹즙의 보호효과 (Protective Effect of Angelica keiskei Juice and Oenanthe javanica DC Juice on Oxidative Stress)

  • 이두진;이진하;이옥환;김보경;박건영;김종대
    • 한국식품과학회지
    • /
    • 제47권4호
    • /
    • pp.517-524
    • /
    • 2015
  • 본 연구에서는 신선초 녹즙과 돌미나리 녹즙을 다양한 실험을 통하여 산화방지 활성을 측정하였다. DPPH 라디칼, NO, $O_2{^-}$, ${\cdot}OH$ 라디칼 소거능 실험을 이용하여 유기농 및 일반농 신선초 녹즙과 돌미나리 녹즙의 산화방지 활성을 측정해 본 결과, 모든 시료군에서 높은 라디칼 소거 활성이 나타났다. 또한, 산화적 스트레스에 민감한 LLC-$PK_1$ 세포를 이용하여 유기농 및 일반농 신선초 녹즙과 돌미나리 녹즙의 산화적 스트레스 개선 효과를 살펴본 결과, 신선초 녹즙과 돌미나리 녹즙은 AAPH, SNP, 파이로갈롤과 SIN-1에 의해 유발된 산화적 스트레스(NO, $O_2{^-}$$ONOO^-$)에 대한 세포 생존율을 증가시키고, 지질과산화를 억제시켜 라디칼에 의한 산화적 스트레스에 대한 개선 효과가 뛰어난 것으로 사료된다. 이상의 결과로부터 신선초 녹즙과 돌미나리 녹즙은 우수한 산화방지 활성과 지질과산화 개선 효과를 나타내어 신선초 녹즙과 돌미나리 녹즙으로부터 산화방지 영양소를 충분히 섭취하는 것이 산화적 손상과 관련된 질병을 예방하는 좋은 방법이 될 수 있을 것이라 사료된다.

Agastache rugosa Leaf Extract Inhibits the iNOS Expression in ROS 17/2.8 Cells Activated with TNF-$\alpha$ and IL-$\beta$

  • Oh Hwa Min;Kang Young Jin;Kim Sun Hee;Lee Young Soo;Park Min Kyu;Heo Ja Myung;Sun Jin Ji;Kim Hyo Jung;Kang Eun Sil;Kim Hye Jung;Sea Han Geuk;Lee Jae Heun;YunChoi Hye Sook
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.305-310
    • /
    • 2005
  • It has been suggested that nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) may act as a mediator of cytokine-induced effects on bone turn-over. NO is also recognized as an important factor in bone remodeling, i.e., participating in osteoblast apoptosis in an arthritic joint. The components of Agastache rugosa are known to have many pharmacological activities. In the present study, we investigated the effects of Agastache rugosa leaf extract (ELAR) on NO production and the iNOS expression in ROS 17/2.8 cells activated by a mixture of inflammatory cytokines including TNF-$alpha$ and IL-1$\beta$. A preincubation with ELAR significantly and concentration-dependently reduced the expression of iNOS protein in ROS 17/2.8 cells activated with the cytokine mixture. Consequently, the NO production was also significantly reduced by ELAR with an IC$_{50}$ of 0.75 mg/mL. The inhibitory mechanism of iNOS induction by ELAR prevented the activation and translocation of NF-$\kappa$B (p65) to the nucleus from the cytosol fraction. Furthermore, ELAR concentration-dependently reduced the cellular toxicity induced by sodium nitroprusside, an NO-donor. These results suggest that ELAR may be beneficial in NO-mediated inflammatory conditions such as osteoporosis.