• Title/Summary/Keyword: sodium montmorillonite

Search Result 39, Processing Time 0.025 seconds

Enhancing the Oxygen Removal Rate for Its Application in Food Packaging Through the Impregnation of Porous Materials with the Non-metallic Oxygen Scavenger Sodium Metabisulfite (메타중아황산나트륨을 다공성물질에 함침하여 제조한 비금속류 산소제거제의 산소제거속도 향상 및 식품 포장 적용 연구)

  • Suyeon Jeong;Hyun-Gyu Lee;Seung Ran Yoo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.43-51
    • /
    • 2024
  • The addition of oxygen scavengers to food products helps to reduce oxygen exposure, thereby mitigating deterioration, including changes in taste, odor, and color, as well as inhibiting microbial growth. Despite the advantages of the existing non-metallic oxygen removal materials in terms of safety for the human body and suitability for use in microwave ovens, their utilization has been limited due to their slow reaction initiation speed. Therefore, in the current study, sodium metabisulfite was impregnated into various porous media, including halloysite nanoclay, activated carbon, montmorillonite, and silica gel. The oxygen scavenger, produced by impregnating silica gel with sodium metabisulfite, demonstrated a 425% improvement in the initial oxygen removal rate compared to pure sodium metabisulfite. Additionally, sachets containing an oxygen-removing composition with an enhanced oxygen removal rate effectively decreased the oxygen concentration to less than 0.5% on the third day of storage in apple packaging, without elevating carbon dioxide levels. Moreover, it proved effective in preventing the browning of the apple surface. Therefore, the SM/SG oxygen-removal composition can be effectively applied to active food packaging by controlling the oxygen concentration within the packaging.

Effect of Intercalant on the Synthesis and Properties of Epoxy Nanocomposites (에폭시 나노복합재료 제조 및 물성에 미치는 유기화제의 영향)

  • 강재현;유성구;최현국;서길수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.414-420
    • /
    • 2001
  • In this study, the effect of type of intercalant on properties of epoxy nanocomposites was investigated. Cetyltrimethylammoniumbromide (CTMA) as an alkylammonium salt and cetyltributylphosphoniumbromgide (CTBP) as an alkylphosphonium salt were used to modify sodium montmorillonite. In the case of using the CTMA as an intercalant, the long spacing of the silicate layer was about $18.8 {\AA}$. When CTBP was used, the long spacing of the silicate layer ( $23.8{\AA}$) was higher than that of CTMA. From these results, the characteristic length of the modified silicate was found to be significantly affected by the type of intercalant. We also noted that the thermal stability of modified MMT were affected by the type of intercalant, but in the epoxy nanocomposites prepared from the modified MMT, the thermal stability remains almost the same regardless of the type of intercalant. Tensile strength and elongation of epoxy nanocomposites prepared from MMT modified with CTBT were found to be higher than those of the epoxy nanocomposite prepare with WT modified with CTMA.

  • PDF

Comparison Study on the Removal of Cationic Dyes from Aqueous Suspension of Maghnia Montmorillonite (Maghnia 산 Montmorillonite 수용액으로부터 양이온 염료의 제거 비교연구)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.300-309
    • /
    • 2010
  • The ability of sodium-exchanged clay particles as an adsorbent for the removal of commercial dyes, Methylene blue (MB) and Malachite green oxalate (MG) from aqueous solutions has been investigated under various experimental conditions. The effect of the experimental parameters, such as pH solution, agitation time, adsorbate concentration and adsorbent dose were examined. Maximum adsorption of dyes, i.e. >90% has been achieved in aqueous solutions using 0.03 g of clay at a pH of 7 and 298 K for both dyes. The adsorption process was a fast and the equilibrium was obtained within the first 5 min. For the adsorption of both MB and MG dyes, the pseudo-second-order reaction kinetics provides the best correlation of the experimental data. The adsorption equilibrium results follow Langmuir and Dubini-Radushkevich (D-R) isotherms with high regression coefficients $R^2$ > 0.98. The mean free energies $E_a$ of adsorption from D-R model were 3.779 and 2.564 kj/mol for MB and MG respectively, which corresponds to a physisorption process.

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

Effects of Dispersivity of Clay on Thermal Stabilities of PP/Clay Nanocomposites (점토의 분산성이 PP/점토 나노복합재료의 열안정성에 미치는 영향)

  • 박수진;전병렬;송시용;최길영;이종문
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.458-463
    • /
    • 2003
  • The effect of ozone surface treatment of montmorillonite (MMT) was investigated in thermal stabilities of polypropylene (PP) nanocomposites. Sodium montmorillonite (Na$\^$+/-MMT) was organically modified with dodecylammonium chloride. The surface properties of MMT, including the specific surface area (S$\_$BET/), equilibrium spreading pressure ($\pi$$\_$e/), and London dispersive component (${\gamma}$s$\^$L/), were studied by the BET method with $N_2$ adsorption. Also, the thermal stabilities of the nanocomposites were investigated in DSC and TGA. As experimental results, $\pi$$\_$e/ and ${\gamma}$s$\^$L/ of the ozonized dodecylammonium chloride (DA-MK ( $O_3$)) were increased in about 1.7 and 3.5 mJ/ $m^2$, resulting from the increasing of the micropores. From the DSC results, it was found that the melting temperature and crystallization temperature of PP/DA-MK and PP/DA-MK ( $O_3$) were higher that those of pure PP. These results were explained that dodecylammonium chloride of nano-scale led to a nucleation effect for PP crystallization. Also, it was found that E$\_$t/ of the PP/DA-MK ( $O_3$) nanocomposies was increased within about 64 kJ/mol. These results were probably explained by the improvement of dispersivity of DA-MK ( $O_3$) in a PP matrix.

Preparation and Characterization of Muscovite Mica/UV Coating Materials for Steel

  • Cheong, In-Woo;Kim, Hyeon-Seok;Hwang, Dong-Seop;Yoo, Hye-Jin;Kim, Jin-Tae;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.265-269
    • /
    • 2010
  • This paper describes the exfoliation and surface modification of muscovite mica for UV coating formulation. For the exfoliation of the mica, hydrothermal process was used in the presence of lithium nitrate ($LiNO_3$). After the cation exchange with $Li^+$ ions, the surface of the mica was modified with several amphiphilic substances to increase compatibility and storage stability in UV coating formulation. Such a hydrophobic surface modification affected colloidal stability as well as dispersibility of the exfoliated mica in UV coating solution. Anticorrosive property of mica/UV coated steel plates was tested by salt spray test (SST) and compared with sodium montmorillonite ($Na^+$-MMT)/UV coated steel plates.

Sound Damping of a Polyurethane Foam Nanocomposite

  • Sung, Chang-Hyun;Lee, Kyung-Sick;Lee, Kyu-Se;Oh, Seung-Min;Kim, Jae-Hoon;Kim, Min-Seok;Jeong, Han-Mo
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.443-448
    • /
    • 2007
  • To improve the sound damping effect of flexible polyurethane foam, with an open-cell structure, various plate-like fillers, such as bentonite, organophilic clay and sodium montmorillonite intercalated with poly(ethylene glycol), were incorporated for the creation of nanocomposites. The plate-like fillers effectively improved the sound damping within the high frequency range. The structures of the nanocomposites and foam were examined using X-ray diffraction and scanning electron microscopy. The mechanical properties and flammability of the foams were also examined.

Trimeric Chromium Oxyformate Route to Chromia-Pillared Clay

  • Yun, Ju Byeong;Hwang, Seong Ho;Choe, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1049-1051
    • /
    • 2000
  • A chromia-pillared clay has been prepared by ion exchange type intercalation reaction between the sodium ion in montmorillonite and the trimeric chromium oxyformate (TCF) ion, and by subsequent heat-treatment. The structural and thermal properties have been systematically studied by thermal analysis, powder XRD, IR spec-troscopy, and XAS. The gallery height of~6.8 $\AA$ upon intercalation of the TCF ion suggests that the $Cr_3O$ plane is parallel to the aluminosilicate layers. Even though the basal spacing of TCF intercalated clay decreases slightly upon heating, the layer structure was retained up to $550^{\circ}C$ as confirmed by XRD and TG/DTA. Ac-cording to the EXAFS spectroscopic analysis, it is identified that the (Cr-Cr) distance of 3.28 $\AA$ between vertex-linked CrO6 octahedra in TCF splits into 2.64 $\AA$, 2.98 $\AA$, and 3.77 $\AA$ due to the face-, edge-, and corner-shared CrO6 octahedra after heating at $400^{\circ}C$, implying that a nano-sized chromium oxide phase was stabilized within the interlayer space of clay.

Reactive Hot Melt Polyurethane Adhesives Modified by Acrylic Copolymer Nanocomposites

  • Cho, Youn-Bok;Jeong, Han-Mo;Kim, Byung-Kyu
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.879-885
    • /
    • 2009
  • A macroazoinitiator (MAI) containing a poly(ethylene glycol) (PEG) segment was intercalated in the gallery of sodium montmorillonite (Na-MMT). Acrylic monomers were polymerized using this MAI intercalated in Na-MMT to prepare the acrylic copolymer nanocomposite (AN), which is a multiblock copolymer composed of two segments, an acrylic copolymer and PEG intercalated in Na-MMT (Na-MMT/PEG). When AN was used to modify the reactive hot melt polyurethane adhesive (RHA), the acrylic copolymer segment and Na-MMT/PEG synergistically enhanced the initial bond strength evolution and reduced the set time, even when the amount of Na-MMT in RHA was < 1 wt%. The viscosity of RHA increased and the tensile properties of the cured RHA film decreased due to modification with AN. These variations were more evident as the Na-MMT content in AN was increased.

Nanocomposites from Epoxy Resin and Layered Minerals (에폭시 수지와 층상광물로부터 나노복합재료의 합성)

  • 강재현;유성구;서길수
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.571-577
    • /
    • 2000
  • A new type of filler for epoxy-clay nanocomposites has been prepared by the reaction of octadecyltrimethylammonium bromide and layered sodium montmorillonite (MMT) via an ion-exchange reaction. The gallery space was further modified by grafting the aminopropyl groups via a reaction between a octadecyltrimethylammonium-MMT and 3-aminopropyltriethoxysilane (APS). The interlayer modification of MMT was confirmed by XRD, IR, and solid-state $^{29}$ Si CP/MAS NMR. Furthermore, clay-polymer nanocomposites have been synthesized by the polymerization of diglycidyl ether of bisphenol A(DGEBA) and $C_{18}$ H$_{37}$ N($CH_3$)$_3$-APS-MMT. The resulting hybrid nanocomposites were characterized by XRD, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results proved that the organomontmorillonite could be exfoliated and uniformly dispersed in the epoxy matrix.

  • PDF