• Title/Summary/Keyword: sodium bisulfite

Search Result 48, Processing Time 0.02 seconds

A Survey on the Application of Preservatives to Processed Food Types (보존료의 가공식품 유형별 사용 현황 연구)

  • Jeong, Eun-Jeong;Jin, Kyoung Nam;Choi, Hyeonjeong;Jeong, Yusang;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.261-270
    • /
    • 2020
  • The application of color retention agents (3 items), preservatives (17 items), and bleaching agents (6 items) as food additives in processed foods were investigated by food type. Among color retention agents, sodium nitrite was used the most with 257 cases, mainly in seasoned jeoktal (71.21%), ready-to-eat foods (7.78%), and breads (4.87%). Of the benzoates (1,236 cases) used as a preservative, sodium benzoate showed up most, in 1,215 cases, while 81.16% of these were in beverages such as beverage base (39.51%), mixed beverages (22.47%), and ginseng/red ginseng beverages (8.89%). Grapefruit seed extracts (3,291 cases) were applied to 44 types of processed foods such as sauces (54.65%), liquid tea (10.46%), and other products (5.15%). Ethyl p-hydroxybenzoate (2,957 cases) was applied to products (total 96.44%) such as sauces (92.15%), blended soy sauce (2.77%), and pickled foods (1.52%). Potassium sorbate was applied to a total of 789 cases, mainly pickled foods (40.43%) and processed fishery products (47.15%). All 27 cases of sorbic acid were applied to fish paste (100%). Of the bleaching agents, sodium bisulfite and sodium hydrosulfite were mainly used in confectioneries, breads or rice cakes, and potassium metabisulfite, sodium metabisulfite, and sulfur dioxide were mainly found in alcoholic beverages including fruit wine, while sodium sulfite was mostly used in pickled foods. These results are deemed useful in applying food additives to processed foods.

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF

Hypomethylation of DNA in Nuclear Transfer Embryos from Porcine Embryonic Germ Cells

  • Lee, Bo-Hyung;Ahn, Kwang-Sung;Heo, Soon-Young;Shim, Ho-Sup
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.

Microsatellite Instability and Promoter Methylation of hMLH1 in Sporadic Gastric Carcinoma (산발성 위암에서 Microsatellite Instability 빈도와 hMLH1 촉진자부위 메칠화)

  • Kim Hee Cheol;Roh Sun Ae;Yook Jeong Hwan;Oh Sung Tae;Kim Byung Sik;Yu Chang Sik;Kim Jin Cheon
    • Journal of Gastric Cancer
    • /
    • v.3 no.1
    • /
    • pp.50-55
    • /
    • 2003
  • Background: An aberrant function of the mismatch repair system has been reported to underlie carcinogenesis in several tumors, including colorectal and gastric carcinomas, and to induce the typical genotype of microsatellite instability (MSI). Purpose: We aimed to determine the frequency of MSI in early-onset sporadic gastric carcinoma and elucidate the role of promoter methylation in hMLH1 as the mechanism of MSI. Materials and Methods: Thirty-six early-onset sporadic gastric carcinomas were analyzed to determine the status of MSI and the frequency of methylation of the promoter region in hMLH1. MSI was determined using five markers recommended by NCI: MSI-H (high), MSI-L (low), and MSS (Microsatellite stable). Methylation specific PCR (MSP) and direct automated genomic sequencing analysis with DNA modified by sodium bisulfite have been performed to confirm promoter region methylation. All the data were analyzed regarding characteristics of molecular changes, and clinicopathologic variables. Results: The microsatellite status was determined as MSI-H in five cases ($13.8\%$), MSI-L in 13 cases ($36.1\%$), and MSS in 18 cases ($50.0\%$). hMLH1 was methylated in seven cases ($19.4\%$). In all cases of MSI-H, promoter of hMLH1 was methylated, and in two of the 13 cases of MSI-L, hMLH1 promoter methylation was identified. Methylation was not found in any cases of MSS. Promoter methylation in hMLH1 was significantly correlated with MSI status (P<0.001). We could not find any relationship between MSI and clinicopathologic parameters. Conclusion: These results suggest that an abnormal function of the mismatch repair system may be associated with gastric carcinogenesis in more than $10\%$ of early-onset gastric carcinomas and MSI appeared to be closely related to the promoter methylation in hMLH1.

  • PDF

Studies on the Storage and Utilization of Sweet Potatoes -IV. Storing Capacity, Resin Content and Processing Conditions of Sweetpotato Chips of Different Varieties- (고구마의 저장(貯藏) 및 이용(利用)에 관(關)한 연구(硏究) -IV. 품종(品種)에 따른 저장성(貯藏性), 수지함량(樹脂含量) 및 고구마칩의 가공조건(加工條件)-)

  • Kim, H.S.;Lee, C.Y.;Kim, Z.U.;Lee, S.R.;Lee, K.H.;Chun, J.K.
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.123-130
    • /
    • 1969
  • Five varieties of sweetpotatoes recommended in Korea were investigated with respect to the storing capacity, resin content and the possibility of developing sweetpotato chips as a new processed food item. The results are summarized as follows: 1) Two varieties, Suwon No. 147 and Chun-Mi were more resistant to chilling injury and soft-rot decay than other varieties. 2) The contents of resinous and polyphenolic substances were quite different depending upon the variety. 3) Sweetpotato chips of different color were made from different varieties and rapeseed oil was found to be the best as frying oil. 4) Best conditions to prepare sweetpotato chips with fresh color and proper texture were to dip slices of 1-2 mm thickness in 0.25% sodium bisulfite solution at $40^{\circ}C$ for 30-40 minutes and to subject to deep frying in an oil bath at $150-160^{\circ}C$ for 2.5 to 3.5 minutes. 5) Polyethylene-cellophane film as packing material of sweetpotato chips was the film in the moisture proof and film-impact tests.

  • PDF

The Amino-Carbonyl Reaction in the Fructose-Glycine Mixture System (Fructose-Glycine 혼합계에 있어서 Amino-Carbonyl 반응)

  • Lee, Jin-Ho;Han, Kang-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.351-359
    • /
    • 1989
  • This study was conducted to observe the physico-chemical exchange and effect of amino-carbonyl reaction between fructose and glycine . When various buffer solutions were added to equimolar mixture of fructose and glycine at pH 6.0 and $100^{\circ}C$, the browning effect was markedly observed by Mcllvaine buffer. Among the combinations of temperature and reaction time, the deep browning effect was obtained above $100^{\circ}C$, 3hr A marked browning effect obtained above pH 7.0 but little observed below pH 7.0. The browning effect was markedly increased at high fructose concentration. It required 4.0hrs and 32.9hrs to decrease 50% of initial concentration of fructose and glycine at $100^{\circ}C$ and pH 7 but 0.9hrs and 3.8hrs at $120^{\circ}C$, pH 7.0, respectively. The rate constant of fructose and glycine at $100^{\circ}C\;and\;120^{\circ}C$ were $1.78{\times}10^{-1},\;2.11{\times}10^{-2}\;and\;7.74{\times}10^{-1},\;1.83{\times}10^{-1}$, respectively. The formation of HMF was likely to follow the first order kinetics. The addition of 0.1M sodium sulfite, 0.1M sodium bisulfite and 0.1M calcium chloride to equimolar mixture (0.05M) surpressed the reaction up to 76.8%, 76.8% and 96.4%, respectively.

  • PDF

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

Aberrant Promoter Methylation of Death-Associated Protein Kinase in Serum DNA from Lung Cancer Patients (원발성 폐암 환자의 혈청에서 DAP kinase 유전자의 Methylation 양상)

  • Lee, Jun Hee;Lee, Jung Wook;Jung, Kyung Sik;Kim, Ki Uk;Lee, Tae Kun;Lee, Kyung Woo;Na, Min-Ah;Jeon, Doo Soo;Choi, Young Min;Kim, Yun Seong;Lee, Min Ki;Park, Soon Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.4
    • /
    • pp.378-387
    • /
    • 2003
  • Background : Promoter methylation of tumor suppressor genes is one of the key epigenetic changes in many human cancers. The aim of this study was to evaluate the promoter methylation status of the Death-associated protein(DAP) kinase gene, which played an important role in lung cancer, in the serum DNA of primary lung cancer patients. Methods : This study investigated the aberrant methylation of DAP kinase in the serum of 65 primary lung cancer patients by methylation-specific PCR (MSP). Results : Methylation in the serum was detected in 29 of 65(44.6%) for DAP kinase. There was no statistical association between methylation of DAP kinase and age, smoking history, histologic type, or stage. Methylation of DAP kinase was found more frequently in men (p=0.044). Conclusions : This study suggests that the aberrant methylation of the DAP kinase promoter is readily detectable in the serum DNA of lung cancer patients using MSP analysis.