• Title/Summary/Keyword: social media big data

Search Result 288, Processing Time 0.024 seconds

Machine Learning Method in Medical Education: Focusing on Research Case of Press Frame on Asbestos (의학교육에서 기계학습방법 교육: 석면 언론 프레임 연구사례를 중심으로)

  • Kim, Junhewk;Heo, So-Yun;Kang, Shin-Ik;Kim, Geon-Il;Kang, Dongmug
    • Korean Medical Education Review
    • /
    • v.19 no.3
    • /
    • pp.158-168
    • /
    • 2017
  • There is a more urgent call for educational methods of machine learning in medical education, and therefore, new approaches of teaching and researching machine learning in medicine are needed. This paper presents a case using machine learning through text analysis. Topic modeling of news articles with the keyword 'asbestos' were examined. Two hypotheses were tested using this method, and the process of machine learning of texts is illustrated through this example. Using an automated text analysis method, all the news articles published from January 1, 1990 to November 15, 2016 in South Korea which included 'asbestos' in the title and the body were collected by web scraping. Differences in topics were analyzed by structured topic modelling (STM) and compared by press companies and periods. More articles were found in liberal media outlets. Differences were found in the number and types of topics in the articles according to the partisanship and period. STM showed that the conservative press views asbestos as a personal problem, while the progressive press views asbestos as a social problem. A divergence in the perspective for emphasizing the issues of asbestos between the conservative press and progressive press was also found. Social perspective influences the main topics of news stories. Thus, the patients' uneasiness and pain are not presented by both sources of media. In addition, topics differ between news media sources based on partisanship, and therefore cause divergence in readers' framing. The method of text analysis and its strengths and weaknesses are explained, and an application for the teaching and researching of machine learning in medical education using the methodology of text analysis is considered. An educational method of machine learning in medical education is urgent for future generations.

COVID-19 News Analysis Using News Big Data : Focusing on Topic Modeling Analysis (뉴스 빅데이터를 활용한 코로나19 언론보도 분석 :토픽모델링 분석을 중심으로)

  • Kim, Tae-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.457-466
    • /
    • 2020
  • The purpose of this study is to find out what the main agenda of social formation is and how it changes through the media by utilizing the news big data of COVID-19 which is spreading recently, and to suggest the direction of future reporting. In order to achieve the purpose of the research, 47,816 cases of news big data reported from December 31, 2019 to March 11, 2020 were divided into four periods based on the fourth stage of the crisis warning for infectious diseases, and a total of 20 topics were derived. Based on the results of the Topic Modeling analysis, this study proposed the following. First, it is necessary to refrain from provocative expressions such as "anxiety" and "fear" and use neutral and objective reporting terms. Second, more in-depth and contextual news production is required, breaking away from simple event news production. Third, it is necessary to prepare detailed crisis communication manuals for each situation related to infectious diseases. Fourth, we need reports that focus on citizens-led efforts to overcome the crisis. This research has the academic significance that it is the first paper to analyze news big data on COVID-19 using the Topic Modeling Analysis method, and the policy significance that can be used as the basis for developing national crisis communication policy.

Change in Market Issues on HMR (Home Meal Replacements) Using Local Foods after the COVID-19 Outbreak: Text Mining of Online Big Data (코로나19 발생 후 지역농산물 이용 간편식에 대한 시장 이슈 변화: 온라인 빅데이터의 텍스트마이닝)

  • Yoojeong, Joo;Woojin, Byeon;Jihyun, Yoon
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • This study was conducted to explore the change in the market issues on HMR (Home Meal Replacements) using local foods after the COVID-19 outbreak. Online text data were collected from internet news, social media posts, and web documents before (from January 2016 to December 2019) and after (from January 2020 to November 2022) the COVID-19 outbreak. TF-IDF analysis showed that 'Trend', 'Market', 'Consumption', and 'Food service industry' were the major keywords before the COVID-19 outbreak, whereas 'Wanju-gun', 'Distribution', 'Development', and 'Meal-kit' were main keywords after the COVID-19 outbreak. The results of topic modeling analysis and categorization showed that after the COVID-19 outbreak, the 'Market' category included 'Non-face-to-face market' instead of 'Event,' and 'Delivery' instead of 'Distribution'. In the 'Product' category, 'Marketing' was included instead of 'Trend'. Additionally, in the 'Support' category, 'Start-up' and 'School food service' appeared as new topics after the COVID-19 outbreak. In conclusion, this study showed that meaningful change had occurred in market issues on HMR using local foods after the COVID-19 outbreak. Therefore, governments should take advantage of such market opportunity by implementing policy and programs to promote the development and marketing of HMR using local foods.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

Topic Modeling-based Book Recommendations Considering Online Purchase Behavior (온라인 구매 행태를 고려한 토픽 모델링 기반 도서 추천)

  • Jung, Youngjin;Cho, Yoonho
    • Knowledge Management Research
    • /
    • v.18 no.4
    • /
    • pp.97-118
    • /
    • 2017
  • Thanks to the development of social media, general users become information and knowledge providers. But customers also feel difficulty to decide their purchases due to numerous information. Although recommender systems are trying to solve these information/knowledge overload problem, it may be asked whether they can honestly reflect customers' preferences. Especially, customers in book market consider contents of a book, recency, and price when they make a purchase. Therefore, in this study, we propose a methodology which can reflect these characteristics based on topic modeling and provide proper recommendations to customers in book market. Through experiments, our methodology shows higher performance than traditional collaborative filtering systems. Therefore, we expect that our book recommender system contributes the development of recommender systems studies and positively affect the customer satisfaction and management.

Analysis on the Media Content Research Trends in Media Convergence Era Based on Intellectual Information Technology (지능정보기술 기반 미디어 컨버전스 시대의 콘텐츠 연구경향 분석)

  • Jeon, Gyongran;Kim, Young-Chul
    • Journal of Korea Game Society
    • /
    • v.20 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • This study is the research tendency(2016~2019) on the content and the intelligent information technology. After the IIT emerged as a social topic, related research increased, and interest in VR and AR was the highest. In games, more research has been done on VR and AR. In the case of big data technology, it was a tendency to pay attention to the study of movie contents. Many studies have attempted a technological approach to IIT. With regard to artificial intelligence technology, there were differences by technology and content area, mainly viewed from a legal and institutional perspective.

Machine Learning based Firm Value Prediction Model: using Online Firm Reviews (머신러닝 기반의 기업가치 예측 모형: 온라인 기업리뷰를 활용하여)

  • Lee, Hanjun;Shin, Dongwon;Kim, Hee-Eun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.79-86
    • /
    • 2021
  • As the usefulness of big data analysis has been drawing attention, many studies in the business research area begin to use big data to predict firm performance. Previous studies mainly rely on data outside of the firm through news articles and social media platforms. The voices within the firm in the form of employee satisfaction or evaluation of the strength and weakness of the firm can potentially affect firm value. However, there is insufficient evidence that online employee reviews are valid to predict firm value because the data is relatively difficult to obtain. To fill this gap, from 2014 to 2019, we employed 97,216 reviews collected by JobPlanet, an online firm review website in Korea, and developed a machine learning-based predictive model. Among the proposed models, the LSTM-based model showed the highest accuracy at 73.2%, and the MAE showed the lowest error at 0.359. We expect that this study can be a useful case in the field of firm value prediction on domestic companies.

Risk Communication Networks in South Korea: The Case of the 2017 Gangneung Wildfire

  • Oh, Jeongmin;Jung, Kyujin;Song, Minsun
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.85-107
    • /
    • 2021
  • Wildfires have become increasingly common and intense in South Korea because of climate change, but few have recognized the catastrophic level of the problem. Given the significant impact of wildfires, emergency management stakeholders must have effective risk communication structures for rapidly responding to such phenomena and overcoming geographical difficulties. Despite the country spending billions of dollars to build a big databased early warning system, risk communication flow during the 2017 Gangneung wildfire was ineffective, thereby causing substantial economic, social, and environmental losses. To examine the patterns of information exchange in South Korea's risk communication networks and their structural characteristics during the wildfire, we conducted semantic and network analyses of real-time data collected from social media. The results showed that the inefficient flow of risk information prevented emergency responders from adequately assessing the emergency and protecting the population. This study provides new insights into effective risk communication responses to catastrophic events and methods of research on webometric approaches to emergency management.

How do People Understand and Express "Smart City?": Analysis of Transition in Smart-city Keywords through Semantic Network Analysis of SNS Big Data between 2011 and 2020

  • Kim, Seong-A;Kim, Heungsoon
    • Architectural research
    • /
    • v.24 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • The purpose of this study is to grasp the understanding of smart cities and to review whether the common perception of smart cities, as people understand it, is changing over time. This study analyzes keywords related to smart cities used in social network services (SNSs) in 2011, 2016, and 2020 respectively through semantic network analysis. Smart city discussions appearing on SNS in 2011 mainly focused on technology, and the results of 2016 were generally similar to those of 2011. We can also find policy or business-oriented characteristics in emerging countries in 2020. We highlight that all the results of 2011, 2016, and 2020 have some correlation with each other through QAP(Quadratic Assignment Procedure) correlation analysis, and among them, the correlation between 2011 and 2016 is analyzed the most. The results of the frequency analysis, centrality analysis, and CONCOR(CONvergence of interaction CORrelation) analysis support these results. The results of this study help establish policies that reflect the needs and opinions of citizens in planning smart cities by identifying trends and paradigm transitions expressed by people in SNS. Furthermore, it is expected to help emerging countries by enhancing the understanding of the essence and trend of smart cities and to contribute by suggesting the direction of more sustainable technology development in future smart city policies for leading countries.

A study on Korean tourism trends using social big data -Focusing on sentiment analysis- (소셜 빅데이터를 활용한 한국관광 트렌드에 관한연구 -감성분석을 중심으로-)

  • Youn-hee Choi;Kyoung-mi Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.97-109
    • /
    • 2024
  • In the field of domestic tourism, tourism trend analysis of tourism consumers, both international tourists and domestic tourists, is essential not only for the Korean tourism market but also for local and governmental tourism policy makers. e will explore the keywords and sentiment analysis on social media to establish a marketing strategy plan and revitalize the domestic tourism industry through communication and information from tourism consumers. This study utilized TEXTOM 6.0 to analyze recent trends in Korean tourism. Data was collected from September 31, 2022, to August 31, 2023, using 'Korean tourism' and 'domestic tourism' as keywords, targeting blogs, cafes, and news provided by Naver, Daum, and Google. Through text mining, 100 key words and TF-IDF were extracted in order of frequency, and then CONCOR analysis and sentiment analysis were conducted. For Korean tourism keywords, words related to tourist destinations, travel companions and behaviors, tourism motivations and experiences, accommodation types, tourist information, and emotional connections ranked high. The results of the CONCOR analysis were categorized into five clusters related to tourist destinations, tourist information, tourist activities/experiences, tourism motivation/content, and inbound related. Finally, the sentiment analysis showed a high level of positive documents and vocabulary. This study analyzes the rapidly changing trends of Korean tourism through text mining on Korean tourism and is expected to provide meaningful data to promote domestic tourism not only for Koreans but also for foreigners visiting Korea.