• Title/Summary/Keyword: social media big data

Search Result 288, Processing Time 0.022 seconds

A Study on the Strategies for Activating the Vegan Fashion Brand in the Meaning Out - Based on an Instagram Hashtag Analysis - (미닝아웃 시대의 비건 패션 브랜드 활성화 전략 연구 - 인스타그램 해시태그 분석을 중심으로 -)

  • Kyunghee Jung;Soojeong Bae
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.132-149
    • /
    • 2023
  • This study aims to analyze Instagram hashtags based on big data to investigate changes in consumer trends and perceptions of vegan fashion, and to derive strategies for revitalizing vegan fashion brands based on derived results. Among social media, Instagram was selected as a collection channel, and Instagram hashtags for 'Vegan Fashion' were collected from July 1, 2021 to December 31, 2021. After conducting semantic network analysis with the Ucinet 6 program based on the collected data, the CONCOR analysis on vegan fashion showed the following four clusters: 'Veganism practiced with fashion', 'Bag type of vegan fashion brand', 'Sharing vegan fashion', and 'Diversification of eco-friendly products'. Analysis results showed that the Instagram hashtag for vegan fashion confirmed the MZ generation's increased interest in vegan fashion and their thoughts to recommend and share frequently used items or brand products to people around them. CONCOR analysis of vegan fashion brands showed the following four groups: 'Differentiating the material of vegan bags', 'Eco-friendly products of vegan fashion brands', 'Interest in vegan shoes', and 'Donation campaign of vegan fashion brands'. CONCOR analysis on Meaningout showed the following four clusters: 'MZ Generation's Meaningout Start-up', 'Recommendation Platform for Skin Products', 'Value Consumption Trend for Eco-friendly Clothing', and 'Interest in Eco-friendly Packaging'. The results of this study on vegan fashion, a practical eco-friendly movement that can require changes in social responsibility and perception as issues that directly affect animals, the environment, and humans, are expected to provide basic data to help domestic vegan fashion brands develop marketing strategies.

U-Net-based Recommender Systems for Political Election System using Collaborative Filtering Algorithms

  • Nidhi Asthana;Haewon Byeon
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2024
  • User preferences and ratings may be anticipated by recommendation systems, which are widely used in social networking, online shopping, healthcare, and even energy efficiency. Constructing trustworthy recommender systems for various applications, requires the analysis and mining of vast quantities of user data, including demographics. This study focuses on holding elections with vague voter and candidate preferences. Collaborative user ratings are used by filtering algorithms to provide suggestions. To avoid information overload, consumers are directed towards items that they are more likely to prefer based on the profile data used by recommender systems. Better interactions between governments, residents, and businesses may result from studies on recommender systems that facilitate the use of e-government services. To broaden people's access to the democratic process, the concept of "e-democracy" applies new media technologies. This study provides a framework for an electronic voting advisory system that uses machine learning.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.

The Meanings of New-tro Fashion -Conceptualization and Typologification- (뉴트로 패션의 의미 -개념화와 유형화-)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.4
    • /
    • pp.691-707
    • /
    • 2020
  • This study used big data analysis as informatics that identified keywords related to new-tro fashion; in addition, it conducted differences and types of classification according to demographic characteristics. First, it has been shown that two different generations, the Millennials and the older generation, coexist as important keywords in the context of new-tro fashion. Second, according to age, it has been shown that the keywords that appear in new-tro fashion are taken differently. In most regional keywords that differed in the classification, respondents in their 20s, 30s and 40s were classified as emotional, while those in their 50s or older perceived as factual phenomena. The results of eliciting keywords in new-tro fashion through big data analysis, keywords that reflect phenomena, design details and considerations, fashion styles, fashion brands, fashion items, social media, influence, and emotional adjectives. This study confirmed the meaning of new-tro fashion based on past that can give enjoyment to the new generation and memories to the older generation.

An Analysis of the Positive and Negative Factors Affecting Job Satisfaction Using Topic Modeling

  • Changjae Lee;Byunghyun Lee;Ilyoung Choi;Jaekyeong Kim
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.321-350
    • /
    • 2024
  • When a competent employee leaves an organization, the technical skills and know-how possessed by that employee also disappear, which may lead to various problems, such as a decrease in organizational morale and technology leakage. To address such problems, it is important to increase employees' job satisfaction. Due to the advancement of both information and communication technology and social media, many former and current employees share information regarding companies in which they have worked or for which they currently work via job portal websites. In this study, a web crawl was used to collect reviews and job satisfaction ratings written by all and incumbent employees working in nine industries from Job Planet, a Korean job portal site. According to this analysis, regardless of the industry in question, organizational culture, welfare support, work system, growth capability and relationships had significant positive effects on job satisfaction, while time and attendance management, performance management, and organizational flexibility had significant negative effects on job satisfaction. With respect to the path difference between former and current employees, time and attendance management and organizational flexibility have greater negative effects on job satisfaction for current employees than for former employees. On the other hand, organizational culture, work system, and relationships had greater positive effects for current employees than for former employees.

Forecasting the Future Korean Society: A Big Data Analysis on 'Future Society'-related Keywords in News Articles and Academic Papers (빅데이터를 통해 본 한국사회의 미래: 언론사 뉴스기사와 사회과학 학술논문의 '미래사회' 관련 키워드 분석)

  • Kim, Mun-Cho;Lee, Wang-Won;Lee, Hye-Soo;Suh, Byung-Jo
    • Informatization Policy
    • /
    • v.25 no.4
    • /
    • pp.37-64
    • /
    • 2018
  • This study aims to forecast the future of the Korean society via a big data analysis. Based upon two sets of database - a collection of 46,000,000 news on 127 media in Naver Portal operated by Naver Corporation and a collection of 70,000 academic papers of social sciences registered in KCI (Korea Citation Index of National Research Foundation) between 2005-2017, 40 most frequently occurring keywords were selected. Next, their temporal variations were traced and compared in terms of number and pattern of frequencies. In addition, core issues of the future were identified through keyword network analysis. In the case of the media news database, such issues as economy, polity or technology turned out to be the top ranked ones. As to the academic paper database, however, top ranking issues are those of feeling, working or living. Referring to the system and life-world conceptual framework suggested by $J{\ddot{u}}rgen$ Habermas, public interest of the future inclines to the matter of 'system' while professional interest of the future leans to that of 'life-world.' Given the disparity of future interest, a 'mismatch paradigm' is proposed as an alternative to social forecasting, which can substitute the existing paradigms based on the ideas of deficiency or deprivation.

A domain-specific sentiment lexicon construction method for stock index directionality (주가지수 방향성 예측을 위한 도메인 맞춤형 감성사전 구축방안)

  • Kim, Jae-Bong;Kim, Hyoung-Joong
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.585-592
    • /
    • 2017
  • As development of personal devices have made everyday use of internet much easier than before, it is getting generalized to find information and share it through the social media. In particular, communities specialized in each field have become so powerful that they can significantly influence our society. Finally, businesses and governments pay attentions to reflecting their opinions in their strategies. The stock market fluctuates with various factors of society. In order to consider social trends, many studies have tried making use of bigdata analysis on stock market researches as well as traditional approaches using buzz amount. In the example at the top, the studies using text data such as newspaper articles are being published. In this paper, we analyzed the post of 'Paxnet', a securities specialists' site, to supplement the limitation of the news. Based on this, we help researchers analyze the sentiment of investors by generating a domain-specific sentiment lexicon for the stock market.

A study on the perception of 3D virtual fashion before and after COVID-19 using textmining

  • Cho, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.111-119
    • /
    • 2022
  • The purpose of this paper is to examine the change in perception of 3D virtual fashion before and after COVID-19 using big data analysis. The data collection period is from January 1, 2017, before the outbreak of COVID-19, to October 30, 2022, after the outbreak. Big data was collected for key words related to 3D virtual fashion extracted from social media such as Naver, Daum, Google, and YouTube using Textom. After the collected words were refined, word cloud, word frequency, connection centrality, network visualization, and CONCOR analysis were performed. As a result of extracting and analyzing 32,461 words with 3D virtual fashion as a keyword, the frequency and centrality of fashion, virtual, and technology appeared the highest, and the frequency of appearance of digital, design, clothing, utilization, and manufacturing was also high. Through this, it was found that 3D virtual fashion is being used throughout the industry along with the development of technology. In particular, the key words that stand out the most after COVID-19 are metaverse and 3D education, which are in high demand in the fashion industry.

Images of Nurses Appeared in Media Reports Before and After Outbreak of COVID-19: Text Network Analysis and Topic Modeling (COVID-19 발생 전·후 언론보도에 나타난 간호사 이미지에 대한 텍스트 네트워크 분석 및 토픽 모델링)

  • Park, Min Young;Jeong, Seok Hee;Kim, Hee Sun;Lee, Eun Jee
    • Journal of Korean Academy of Nursing
    • /
    • v.52 no.3
    • /
    • pp.291-307
    • /
    • 2022
  • Purpose: The aims of study were to identify the main keywords, the network structure, and the main topics of press articles related to nurses that have appeared in media reports. Methods: Data were media articles related to the topic "nurse" reported in 16 central media within a one-year period spanning July 1, 2019 to June 30, 2020. Data were collected from the Big Kinds database. A total of 7,800 articles were searched, and 1,038 were used for the final analysis. Text network analysis and topic modeling were performed using NetMiner 4.4. Results: The number of media reports related to nurses increased by 3.86 times after the novel coronavirus (COVID-19) outbreak compared to prior. Pre- and post-COVID-19 network characteristics were density 0.002, 0.001; average degree 4.63, 4.92; and average distance 4.25, 4.01, respectively. Four topics were derived before and after the COVID-19 outbreak, respectively. Pre-COVID-19 example topics are "a nurse who committed suicide because she could not withstand the Taewoom at work" and "a nurse as a perpetrator of a newborn abuse case," while post-COVID-19 examples are "a nurse as a victim of COVID-19," "a nurse working with the support of the people," and "a nurse as a top contributor and a warrior to protect from COVID-19." Conclusion: Topic modeling shows that topics become more positive after the COVID-19 outbreak. Individual nurses and nursing organizations should continuously monitor and conduct further research on nurses' image.

Topic Analysis on the Adolescent Problem Using Text Mining (텍스트 마이닝을 이용한 시대별 청소년 문제 토픽 분석)

  • Cho, Kyoung Won;Cho, Ju-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.203-204
    • /
    • 2018
  • This research was conducted to identify adolescent problems in internet articles. This research defines adolescent problems as diverse issues related to adolescents and examine how it was dealt in the media to find out how different categories and the aspect of adolescent problems are changing by time. The result of the research was that in 1990's, education policy and family were mainly dealt with when it came to adolescent problems. As the era is changing, adolescent problems were far diversified compared to the past, and each problems are dealt with similar importance. This research is significant in that it does not only examine the social trend adolescent problems but also expand the range of adolescent counselling and utilizes quantitative analysis in considering diversity to provide new information.

  • PDF