• 제목/요약/키워드: social media big data

검색결과 288건 처리시간 0.022초

텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석 (Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques)

  • 배정환;손지은;송민
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.141-156
    • /
    • 2013
  • 최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.

텍스트 마이닝과 네트워크 분석을 이용한 지역 이미지 변화 분석 (Regional Image Change Analysis using Text Mining and Network Analysis)

  • 정은희
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.79-88
    • /
    • 2022
  • 소셜미디어 빅데이터는 소비자의 소비형태 뿐만 아니라 지역의 이미지를 파악할 수 있는 많은 정보가 포함되어 있다. 본 논문에서는 국내 포털 사이트인 네이버와 다음의 Blog와 Cafe로부터 '삼척'이 포함된 데이터를 2015년부터 2019년까지 1년 단위로 수집하였고, 텍스트 마이닝과 네트워크 분석을 실시하여 지역 이미지를 형성하는 키워드를 추출하고 지역 이미지 변화를 분석하였다. 연구 결과에 따르면, 2015년 지역 이미지는 '장호항', '동해', '해수욕장' 등 인근 지명이나 장소 등의 이미지 인지적 요소들로 표현되고 있는데, 2016년과 2019년은 지역 내의 특정 장소인 삼척쏠비치로 이미지 인지적 요소가 변한 것을 알 수 있다. 그리고 지역 이미지와 연관된 키워드들이 삼척을 대표하는 명소인 '장호항', 리조트가 포함하고 있는 것을 보아 지역 이미지 형성에 인프라 시설 요소가 큰 역할을 한다고 볼 수 있다. 네트워크 데이터에 대한 유의성 검증은 부트스트랩 기법을 이용하였고, 2015년, 2016년, 2019년 p-value가 각각 0.0002, 0.0006, 0.0002로 유의수준 5%에서 통계적으로 유의한 것으로 나타났다.

Provenance and Validation from the Humanities to Automatic Acquisition of Semantic Knowledge and Machine Reading for News and Historical Sources Indexing/Summary

  • NANETTI, Andrea;LIN, Chin-Yew;CHEONG, Siew Ann
    • Asian review of World Histories
    • /
    • 제4권1호
    • /
    • pp.125-132
    • /
    • 2016
  • This paper, as a conlcusion to this special issue, presents the future work that is being carried out at NTU Singapore in collaboration with Microsoft Research and Microsoft Azure for Research. For our research team the real frontier research in world histories starts when we want to use computers to structure historical information, model historical narratives, simulate theoretical large scale hypotheses, and incent world historians to use virtual assistants and/or engage them in teamwork using social media and/or seduce them with immersive spaces to provide new learning and sharing environments, in which new things can emerge and happen: "You do not know which will be the next idea. Just repeating the same things is not enough" (Carlo Rubbia, 1984 Nobel Price in Physics, at Nanyang Technological University on January 19, 2016).

오피니언 마이닝을 통한 브랜드 클러스터링: 자동차 산업 사례연구 (Clustering Corporate Brands based on Opinion Mining: A Case Study of the Automobile Industry)

  • 황현석
    • 한국산학기술학회논문지
    • /
    • 제17권11호
    • /
    • pp.453-462
    • /
    • 2016
  • 인터넷의 등장으로 고객들은 자신의 의견이나 생각을 인터넷 공간에서 다른 사람들과 공유하기 시작하였다. 이에 따라 기업은 인터넷에서 수집된 데이터를 이용하여 기업에 활용할 수 있는 유의미한 결과를 찾으려는 노력을 하고 있다. 과거 설문조사를 기반으로 고객의 브랜드에 대한 태도나 만족도, 충성도 등을 분석하던 방식에서 소셜 네트워크 서비스(Social Network Service) 등에서 추출된 빅데이터를 이용하여 분석하려는 시도가 이루어지고 있다. 본 연구에서는 SNS에서 수집된 결과를 활용하여 브랜드간의 군집을 발견하는 프레임워크를 제시하고자 한다. 또한 제시된 프레임워크의 실무적용 가능성을 살펴보기 위해 자동차 산업에 대한 사례연구를 수행하였다. 두 개의 브랜드 이름이 소셜 미디어에서 동시에 언급되는 빈도가 높을수록 고객이 두 브랜드를 유사하게 인식한다는 가정 하에 자동차 브랜드 사이의 유사성을 측정하고 거리의 개념으로 변화한 후 다차원 척도법을 이용하여 3차원 상에 표시하였다. 또한 자동차 브랜드에 대한 고객의 인식을 파악하기 위해 유사한 브랜드간의 군집을 도출하고 각 군집을 특징을 기술하였다. 아울러 연구의 한계점과 향후 연구방향을 제시하였다.

텍스트마이닝을 활용한 정보보호 키워드 기반 소셜미디어 빅데이터 분석 (Social Media Bigdata Analysis Based on Information Security Keyword Using Text Mining)

  • 정진명;박영호
    • 한국산업정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.37-48
    • /
    • 2022
  • 디지털 기술의 발전으로 사회적 이슈들이 SNS와 같은 디지털 기반 플랫폼을 통해서 소통되고 여론을 형성하기도 한다. 본 연구에서는 소셜미디어를 통해서 공유되고 있는 정보보호 이슈관련 여론을 살펴보기 위하여 대표적인 단문 소셜네트워크서비스인 트위터 빅데이터 분석을 진행하였다. 2021년 1년간 14개 정보보호 관련 키워드를 중심으로 데이터를 수집한 후, 데이터마이닝 기술을 활용하여 용어 빈도(TF)분석과 피어슨 계수를 활용한 상관분석을 통해 키워드간의 상관관계를 밝혔다. 또한 잠재적 확률기반 LDA 토픽모델링을 실시하여 정보보호분야에 많은 관심을 받았던 6개의 주요 토픽을 도출하였다. 이러한 결과는 관련 산업의 전략수립이나, 정부 정책수립 시 주요 키워드를 도출하는 기초데이터로 활용될 수 있을 것으로 기대된다.

온라인 뉴스 빅데이터를 통한 코로나 19 담론과 사회복지 개입방안: 독거노인을 중심으로 (COVID-19 Discourse and Social Welfare Intervention through Online News Big Data: Focusing on the Elderly Living Alone)

  • 여지영
    • 한국노년학
    • /
    • 제41권3호
    • /
    • pp.353-371
    • /
    • 2021
  • 본 연구는 코로나 19 상황의 독거노인에 대한 빅데이터를 토대로 사회전반적인 개입 및 대응의 담론을 밝힘으로써 사회복지적 정책 수립의 실마리를 제공하고자하는데 목적이 있다. 이를 위하여 2020년 1월 1일부터 2020년 9년 25일까지 수집된 온라인 뉴스 데이터를 활용하여 사회관계망 분석, 토픽모델링 분석을 수행하였다. 분석 결과는 다음과 같다. 첫째, 사회관계망 분석결과, 연결정도 중심성, 위세중심성, 매개중심성 모두 지역, 전달, 사회, 지원, 취약을 중심으로 네트워크가 형성됨으로써 독거노인에 대해서는 각종 지원 및 서비스 전달체계의 필요성에 대한 담론이 형성되었음을 확인하였다. 둘째, 토픽모델링 분석 결과 '공공전달체계 구축''지역사회 지원체계 구축''돌봄공백 보전관리''민간 경제적 지원체계 구축''봉사조직체계 구축'등의 주제가 나타나며, 크게 정부, 지역사회, 민간에서의 유기적 역할에 대한 담론이 제시되었다. 연구결과를 바탕으로 코로나 19와 같은 재난상황에서 독거노인에 대한 개입방안에 대한 논의를 제언함으로써 정책적, 실천적 함의를 제시하였다.

영상콘텐츠분야 정권별 빅데이터 분석 - 상위 중심성 값의 변화를 중심으로 (Analysis of Big Data by Regimes of Image Contents Field)

  • 황고은;문신정
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.911-921
    • /
    • 2017
  • 이 연구는 영상콘텐츠 분야가 정권별로 어떤 의미 구조를 형성하고 있는지 분석하기 위해 의미연결망 분석 기법을 적용했다. 연구대상은 영상콘텐츠 석박사학위논문의 초록을 대상으로, 시기는 문화산업 도입기인 1993년부터 2016년까지이다. 분석대상 단어는 정권별 최상위 출현단어인 영상, 미디어, 교육, 콘텐츠 등 4개 언어의 의미연결망을 분석하였다. 분석방법에는 빅데이터 분석기법인 텍스트 마이닝과 의미연결망 분석을 활용했고, 분석프로그램으로는 R을 사용했다. 연구결과는 다음과 같다. 첫째, '교육'에 대한 영향력 감소이다. 초기 영상콘텐츠 분야는 영상과 관련한 '교육', 어떻게 '표현'할 것인지에 대한 연구들이 많이 실시되었으나 점차 감소 추세를 보였다. 둘째, '미디어'의 역할 변화이다. 중기의 영상콘텐츠 분야는 영상을 전달하는 수단인 '미디어'에 대한 연구들이 주로 실시되었으며, 더불어 '디지털' 기술에 대한 연구들이 강세를 보였다. 마지막으로 '콘텐츠' 위상의 변화이다. 노무현 정부를 시작으로 내용물의 질에 관련한 '콘텐츠'에 대한 관심이 증대하였으며, <박근혜정부>에는 '영상'과 '콘텐츠'의 위상이 거의 동등해져 연구들이 실시되었다.

오피니언 마이닝을 통한 스마트 워치 출시 전후 소비자 반응 분석 (Comparing Customer Reactions Before and After of a Smart Watch Release through Opinion Mining)

  • 이종호;박희준
    • 한국빅데이터학회지
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2016
  • 인터넷의 확산으로 트위터와 같은 SNS가 확산되었고, 컴퓨터 처리 능력의 발달로 빅 데이터 처리가 가능해졌다. 본 연구에서는 현재 주목 받고 있는 기술인 스마트 워치에 대해 다루고 있으며 최근 출시되었던 삼성 갤럭시 기어 S2를 대상으로 연구를 진행하고 있다. 스마트 워치의 출시 전, 후에 게시되었던 트위터 데이터를 수집하여 실제 SNS 사용자들이 신제품 출시에 어떻게 반응하고 있으며 어떠한 다른 양상을 보이는지 분석한다. 분석을 통해 기업 실무자들에게 출시 전, 출시 후 각각에 마케팅에 대응하는 방법에 관한 가이드라인을 제공하며 본 연구에서 사용된 분석 프레임워크는 다른 분야 및 제품에서도 사용 가능한 연구 가이드라인이 된다.

  • PDF

소셜 실감 게임을 위한 이기종 스마트 플랫폼 브릿지 기술 (A Bridge Technique of Heterogeneous Smart Platform supporting Social Immersive Game)

  • 장승은;탕지아메이;김상욱
    • 한국멀티미디어학회논문지
    • /
    • 제17권8호
    • /
    • pp.1033-1040
    • /
    • 2014
  • Recently, the concept of mobile content service has changed from providing unilaterally contents for single-device to providing same contents for multi-device. This service should be able to provide diverse contents for multi-devices without platform and specification of multi-device. In this study, we propose a bridge technique of heterogeneous smart platform supporting social immersive game. It is possible to access social immersive game by using a multi-platform bridge. To achieve this, we explain techniques of device connection and data transmission between heterogeneous devices using server-client structure and UPnP. It provides an immersive game environment for multi-user, which is able to play in a public place using big screen.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.