• 제목/요약/키워드: social media big data

검색결과 288건 처리시간 0.022초

빅데이터 분석을 활용한 프리다이빙 슈트에 대한 소비자 인식 연구 (A Study of Consumer Perception on Freediving Suits Utilizing Big Data Analysis)

  • 김지은;이은영
    • 한국의상디자인학회지
    • /
    • 제26권2호
    • /
    • pp.87-99
    • /
    • 2024
  • Freediving, an underwater leisure sport that involves diving without the use of a breathing apparatus, has gained popularity among younger demographics through the viral spread of images and videos on social media platforms. This study employs prominent Big Data analysis techniques, including text mining, Latent Dirichlet Allocation (LDA) topic analysis, and opinion mining to explore the keywords associated with freediving suits over the past five years. The research aims to analyze the rapidly evolving market trends of freediving suits and the increasingly complex and diverse consumer perceptions to provide foundational data for activating the freediving suit market and developing strategies for sustained growth. The study identified the keyword 'size' related to freediving suits and conducted opinion mining on 'freediving suit sizes'. Although the results showed a higher positive than negative sentiment, negative keywords were also extracted, indicating the need to understand and mitigate the negative factors associated with 'size'. The findings offer vital guidelines for the advancement of the freediving suit market and enhancing consumer satisfaction. This study is important as it contributes foundational data for continuous growth strategies of the freediving suit market.

빅데이터 분석을 이용한 소셜 미디어의 부정적 구전 파급력에 관한 연구: 공급사슬 리스크 관점에서 (A Study on Negative Word-of-mouth Virality of Social Media Using Big Data Analysis: From the Supply Chain Risk's Perspective)

  • 정의범
    • 한국산업정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.163-176
    • /
    • 2022
  • 비즈니스 생태계의 불확실성이 증가함에 따라 공급사슬 내에서 야기는 되는 리스크의 종류도 매우 복잡하고 다양해 지고 있다. 특히 최근 정보통신기술의 발달로 기존 기업이 직면하던 전통적인 공급사슬 리스크 요인 이외에 새로운 리스크 요인을 고려할 필요가 있다. 대표적으로 소셜 미디어를 통한 부정적 구전을 예를 들 수 있다. 이에 본 연구는 대표적인 소셜 미디어인 유튜브(YouTube) 통해 제조 기업을 대상으로 부정적 구전의 파급력에 대해서 연구하였다. 보다 구체적으로는 부정적 구전의 제작자의 사회적 자본이 부정적 구전의 파급력에 어떤 영향을 주는 살펴보고, 그 과정에서 동영상의 부정적 감정이 어떤 역할을 하는지 연구하였다. 그 결과 부정적 구전 생성자의 사회적 자본은 부정적 구전의 규모와 속도에 영향을 주며, 나아가 동영상의 부정적 감정 단어는 동영상 제작자의 사회적 자본과 부정적 구전의 규모에 있어 조절효과를 보였다.

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

코로나-19관련 웨이보 정서 분석을 통한 중국 주식시장의 주판 및 차스닥의 민감도 예측 기법 (Sensitivity of abacus and Chasdaq in the Chinese stock market through analysis of Weibo sentiment related to Corona-19)

  • 이가기;오하영
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2021
  • 최근 코로나 19발생과 동시에 소셜 미디어의 투자자 정서가 증시 가격 움직임을 주도해 관심을 모으고 있다. 본 연구는 행동금융 이론 기반 빅 데이터 분석을 활용하여 소셜 미디어에서 추출한 정서가 중국 증시의 실시간 및 단기적 가격 모멘텀을 예측하는데 활용될 수 있는 기법을 제안한다. 이를 위해, COVID-19와 관련 200만 건 이상의 시나 웨이보 빅 데이터를 키워드 방식으로 수집 및 분석하고 시간이 따른 영향력이 높은 감정 요인을 추출한다. 최종 결과 도출을 위해 다양한 지도 및 비지도 학습 모델을 다 각도에서 구현 및 성능평가를 비교 분석 후, BiLSTM mdoel이 최적의 결과를 낼 수 있음을 증명했다. 또한, 제안하는 기법을 통해 주가변동과 심리요인 간에도 비슷한 움직임을 보이고 있음을 제안했고 소셜미디어에서 추출한 공공분위기가 어느 정도 투자자들의 심리를 대변할 수 있고, 주식시장에 영향을 미칠 수 있는 특수행사에 몰두할 때 증시변동에 차이를 만들 수 있음을 증명했다.

텍스트 분석을 활용한 과학기술이슈 여론 분석 방법론 (A Methodology for Analyzing Public Opinion about Science and Technology Issues Using Text Analysis)

  • 김다솜;;임명수;류신;김남규;박준형;길우영;윤한술
    • 한국IT서비스학회지
    • /
    • 제14권3호
    • /
    • pp.33-48
    • /
    • 2015
  • Recently, many users frequently share their opinions on diverse issues using various social media. Therefore, many governments have attempted to establish or improve national policies according to the public opinions captured from the various social media. In this paper, we indicate several limitations of traditional approaches for analyzing public opinions about science and technology and provide an alternative methodology to overcome the limitations. First of all, we distinguish science and technology analysis phase and social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we apply a start list and a stop list successively to acquire clarified and interesting results. Finally, to identify most appropriate documents fitting to a given subject, we develop a new concept of logical filter that consists of not only mere keywords but also a logical relationship among keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discovering core issues and public opinions from 1,700,886 documents comprising SNS, blog, news, and discussion.

소셜미디어에 나타난 코로나 바이러스(COVID-19) 인식 분석 (Trend Analysis of Corona Virus(COVID-19) based on Social Media)

  • 윤상후;정상윤;김영아
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.317-324
    • /
    • 2021
  • 본 연구는 국내 소셜미디어를 기반으로 코로나 확산 시기에 따른 코로나19 관심사 변화를 텍스트 기반으로 살펴 보았다. 연구자료는 2020년 1월 20일부터 8월 15일까지 네이버와 다음의 블로그와 카페에 올라온 글이다. 코로나 확산시기는 총 3단계로 분류하였다. 중국에서 발견된 코로나19가 한국에 확산되기 시작한 1월 20일부터 2월 17일을 '전조기', 대구를 중심으로 본격적 확산을 진행된 2월 18일부터 4월 20일을 '심각기', 그리고 일 확진자 수가 안정화되는 4월 21일부터 8월 15일을 '안정기'로 명명하였다. 코로나19와 연관된 상위 50개 단어를 추출하여 TF-IDF를 이용하여 군집 분석 하였다. 분석결과 전조기는 코로나 '상황'에 관련된 텍스트가 많았고, 심각기에는 '국가'와 '감염경로'에 관련된 텍스트가 많았다. 안정기에는 '치료'가 주로 언급되었다. 시기와 무관하게 공통적으로 언급이 많이 된 단어는 '감염', '마스크', '사람', '발생', '확진', '정보'이다. 시기별 감정의 변화를 살펴보면 시간이 지남에 따라 긍정의 비율이 높아지고 있다. 카페와 블로그는 글쓴이의 생각과 주관이 담긴 글을 인터넷을 통해 공유하므로 코로나19로 인한 비대면 시대의 주요 정보공유 공간이다. 그러나 정보전달의 선택성과 임의성이 존재하므로 소셜미디어에서 생산되는 정보를 비판적으로 바라보는 시각이 필요하다.

빅데이터를 활용한 청소년 성장관리와 예측을 위한 맞춤형 3D 캐릭터 개발 연구 (Development of Customized 3D Characters for Growth Management and Prediction of Adolescents Using Big Data)

  • 추혜진;하서호
    • 한국콘텐츠학회논문지
    • /
    • 제18권1호
    • /
    • pp.250-257
    • /
    • 2018
  • 오늘날 ICT기술의 급속한 발전과 스마트 기기의 결합은 쉽고 빠른 정보 검색 뿐 아니라 다양한 소셜 미디어를 통해 우리의 삶을 온라인 커뮤니티 환경 속으로 빠르게 이동시키고 있다. 이러한 스마트 미디어 환경에서 개인의 활동이 다방면에서 방대한 데이터로 축적되면서, 일상의 데이터는 이전과는 다른 가치를 재생산하며 여러 분야에서 이를 활용한 새로운 맞춤형 서비스로 제공되고 있다. 근래 들어 보건의료 영역에서도 빅데이터의 활용도가 크게 주목 받고 있는 가운데, 특히 빅데이터와 모바일이 연결된 헬스케어 서비스 개발은 이 분야에 새로운 패러다임을 가져올 것으로 기대하고 있다. 따라서 본 연구에서는 빅데이터를 활용한 아동 및 청소년의 성장 예측 모바일 맞춤형 서비스 개발을 위하여 개인에게 제공되는 정보를 효율적으로 전달하기 위한 방안으로 3D 아바타 캐릭터 모델 제작을 제안하고, 사용자가 캐릭터에 몰입과 일체감을 가질 수 있도록 효과적인 시각적 표현 방법을 모색하고자 한다.

소셜 빅데이터와 Google 검색트렌드를 활용한 한국과 미국의 사이버불링 검색에 영향을 미치는 요인 분석 (Social Factors Affecting Internet Searches on Cyber Bullying in Korea and America Using Social Big Data and Google Search Trends)

  • 송태민;송주영;천미경
    • 한국빅데이터학회지
    • /
    • 제1권1호
    • /
    • pp.67-75
    • /
    • 2016
  • 본 연구의 목적은 소셜 빅데이터와 Google 검색 트렌드를 활용하여 한국과 미국의 사이버불링 검색에 영향을 미치는 요인을 분석하는 것이다. 한국의 사이버불링 요인 분석은 2011년 1월 1일부터 2013년 3월 31일까지 총 227개 소셜미디어에서 수집된 검색통계를 활용하였고, 미국은 2004년 1월 1일부터 2013년 12월 22일까지 구글 검색트렌드에서 검색된 검색량을 분석대상으로 하였다. 첫째 위계적 회귀분석결과 스트레스가 사이버불링에 미치는 영향은 한국이 미국보다 많은 것으로 나타났다. 둘째 다중집단 구조모형 분석결과 한국과 미국 모두 스트레스에서 운동, 음주, 사이버불링으로 가는 경로가 정적(+)으로 유의한 영향을 미치는 것으로 나타났다. 셋째, 한국과 미국은 모든 경로에서 집단 간 유의미한 차이를 보이고 있으며, '스트레스 ${\rightarrow}$ 운동', '스트레스 ${\rightarrow}$ 음주', '음주 ${\rightarrow}$ 사이버불링', '스트레스 ${\rightarrow}$ 사이버불링' 경로가 한국이 미국보다 더 유의하게 강하게 나타났다. 한국의 청소년과 성인은 사이버불링과 관련한 담론을 주고받으며, 이러한 언급이 실제적인 사이버불링과 관련된 심리적 행동적 특성으로 노출이 될 수 있기 때문에 SNS상에 사이버불링 행위에 대한 위험징후가 예측되면 실시간으로 개입할 수 있는 온라인 애플리케이션이 개발되어야 할 것이다.

  • PDF

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.

자연재해 분석을 위한 빅데이터 마이닝 기술 (Big data mining for natural disaster analysis)

  • 김영민;황미녕;김태홍;정창후;정도헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권5호
    • /
    • pp.1105-1115
    • /
    • 2015
  • 자연재해 빅데이터 분석은 현재 소셜 미디어 데이터 등 텍스트 데이터를 중심으로 시작되고 있으며 이는 재난관리의 네 단계인 예방, 대비, 대응, 복구에서 마지막 두 단계에 주로 해당된다. 반면 기상 데이터 자체에 대한 빅데이터 분석은 사전 관리에 해당하는 예방, 대비 단계에 활용될 수 있어 이와 관련한 연구 사례에 대한 체계적인 정리가 필요하다. 본 논문은 리뷰 논문으로서, 자연재해 영역에서 텍스트 데이터 외의 빅데이터를 다루는 분석 기술들에 대해 소개한다. 이를 위해 기상 관련 분야에서 사용되고 있는 데이터 마이닝 및 기계 학습 기술들을 살피고 각 기상 데이터의 특성에 맞춰 기존의 기술들이 어떻게 변형되는 지 밝힌다. 우선 2절에서 빅데이터, 데이터 마이닝, 기계 학습에 대한 기본 개념을 설명하고 3절에서 데이터 마이닝 및 기계 학습 기술의 실제 적용 사례를 상세히 정리한다. 4절에서는 자연재해 대응에 이러한 기술들이 직접 활용되는 예를 소개하고 마지막에 결론으로 마무리한다.