Social networking services have changed the way people communicate. Rapid growth of information generated by social networking services requires effective search methods to give useful results. Over the last decade, social search methods have rapidly evolved. Traditional techniques become unqualified because they ignore social relation data. Existing social recommendation approaches consider social network structure, but social context has not been fully considered. Especially, the friend recommendation is an important feature of SNSs. People tend to trust the opinions of friends they know rather than the opinions of strangers. In this paper, we propose a levelized data processing method for social search in ubiquitous environment. We study previous researches about social search methods in ubiquitous environment. Our method is a new paradigm of levelelized data processing method which can utilize information in social networks, using location and friendship weight. Several experiments are performed and the results verify that the proposed method's performance is better than other existing method.
The evolution of the Web from Web 1.0 to Web 2.0 has brought up new platforms as SNSs(Social Network Service) that are used by users to articulate and manage their relationships. SNSs are an online phenomenon which has become extremely popular. A SNS essentially consists of a representation of each user, his/her social links, and a variety of additional services. SNSs are increasingly attracting the attention of academic and industry researchers. What makes SNS unique is that they have a relationship with friends. The friend recommendation is one important feature of social networking services. People tend to trust the opinions of friends they know rather than the opinions of strangers. In this paper, we propose an efficient data processing method for social data. We study previous researches about social score in social network service. Our ESS(Efficient Social Score) is computed by both friendship weight and score of a document that was tagged by a user's friends. Our experimental results also confirm that our method has good performance.
미디어를 통한 많은 소셜 데이터가 유통, 활용, 공개 되고 있다. 이 소셜 데이터를 이용한 미디어에 대한 즐거움과 정보의 효율적인 측면만 부각되고, 여기에서 발생되는 지나친 정보 노출과 사용자에 대한 인신 공격적 집단 댓글의 피해 문제는 소흘히 취급되고 있다. 본 연구에서는, 악성 집단 댓글 분석에 의한 SNS 여론 소셜 데이터 분석을 하였다. 소셜 네트워크가 가진 구조적 정보 이용을 통해 분석된 정보 분석 데이터의 양, 즉 SNS 언급 횟수 인 버즈량이 얼마나 많은 사람들에게 배포되고 악용되는가에 대한 문제를 다양한 측정 방법으로 분석하였다.
This article examines the multidimensional index extraction method of the disability social security system based on data mining. While creating the data warehouse of the social security system for the disabled, we need to know the elements of the social security indicators for the disabled. In this context, a clustering algorithm was used to extract the indicators of the social security system for the disabled by investigating the historical dimension of social security for the disabled. The simulation results show that the index extraction method has high coverage, sensitivity and reliability. In this paper, a multidimensional extraction method is introduced to extract the indicators of the social security system for the disabled based on data mining. The simulation experiments show that the method presented in this paper is more reliable, and the indicators of social security system for the disabled extracted are more effective in practical application.
There has been a dramatic increase in the popularity of utilizing social media data for research purposes within the biomedical community. In PubMed alone, there have been nearly 2,500 publication entries since 2014 that deal with analyzing social media data from Twitter and Reddit. However, the vast majority of those works do not share their code or data for replicating their studies. With minimal exceptions, the few that do, place the burden on the researcher to figure out how to fetch the data, how to best format their data, and how to create automatic and manual annotations on the acquired data. In order to address this pressing issue, we introduce the Social Media Mining Toolkit (SMMT), a suite of tools aimed to encapsulate the cumbersome details of acquiring, preprocessing, annotating and standardizing social media data. The purpose of our toolkit is for researchers to focus on answering research questions, and not the technical aspects of using social media data. By using a standard toolkit, researchers will be able to acquire, use, and release data in a consistent way that is transparent for everybody using the toolkit, hence, simplifying research reproducibility and accessibility in the social media domain.
There have been many studies that applied a data-driven analysis method to social media data, and some have even argued that this method can replace traditional polls. However, some other studies show contradictory results. There seems to be no consensus as to the methodology of data collection and analysis. But as social media-based election research continues and the data collection and analysis methodology keep developing, we need to review the key points of the controversy and to identify ways to go forward. Although some previous studies have reviewed the strengths and weaknesses of the social media-based election studies, they focused on predictive performance and did not adequately address other studies that utilized social media to address other issues related with public opinion during elections, such as public agenda or information diffusion. This paper tries to find out what information we can get by utilizing social media data and what limitations social media data has. Also, we review the various attempts to overcome these limitations. Finally, we suggest how we can best utilize social media data in understanding public opinion during elections.
Journal of the Korean Data and Information Science Society
/
제16권3호
/
pp.603-608
/
2005
The purpose of this qualitative case study is to understand how the idea of data view and information graphics is used in the social studios middle school textbooks. Data were collected through national curriculum documents and social studies middle textbooks for 7-9 grades. We set up three questions for this studies; what kinds of information graphics are used in the textbooks, how the graphics are organized in the social studies middle school, and how the 7th social studies curriculum is related with the 7th national mathematics curriculum. Through the data analysis, we found that 1) Photographs, illustrations, information maps, etc., are used and frequencies of their usages are in descending order, 2) double lines graphs, circle graphs, and stripe graphs nip often adopted for the comparison of populations, 3) the relation of the two subjects curricula is not so good, especially in the curriculum steps of information mads scatter diagrams, and comparison of populations. Finally we suggest that new web site of data view or information graphics be provided for two curricula, workshop of information graphics are needed for social studies teachers.
본 논문은 지금까지의 소셜미디어 분석과 분석보고서 생성의 세 가지 문제점을 해결하기 위해서 소셜 빅데이터 마이닝에 기반한 이슈분석보고서 자동 생성 시스템을 제안한다. 세 가지 문제점은 분석의 고립성, 전문가의 주관성과 고비용에 기인한 정보의 폐쇄성이다. 시스템은 자연언어 질의분석, 이슈분석, 소셜 빅데이터 분석, 소셜 빅데이터 상관성분석과 자동 보고서 생성으로 구성된다. 생성된 보고서의 유용성을 평가하기 위해, 본 논문에서는 리커트척도를 사용하였고, 빅데이터 분석 전문가 2명이 평가하였다. 평가결과는 리커트 척도 평가에서 보고서의 품질이 비교적 유용하고 신뢰할 수 있는 것으로 평가되었다. 보고서 생성의 저비용, 소셜 빅데이터의 상관성 분석과 소셜 빅데이터 분석의 객관성 때문에, 제안된 시스템이 소셜 빅데이터 분석의 대중화를 선도할 것으로 기대된다.
오늘날 소셜 네트워크 서비스(SNS)의 등장과 발전으로 인해 이전에는 관찰하기 힘들었던 다양한 형태의 정보가 쏟아져 나오고 있으며 또한 최근에는 사용자 각각의 개성과 기호에 따라 특정 관심 분야를 주제로 공유하는 서비스인 버티컬 SNS (Vertical Social Networking Service)가 주요 연구 분야로 떠오르고 있다. 특히 모바일의 GPS를 통해 수집된 지역 데이터(Geolocation Data)와 소셜 데이터를 통해 공간적 특성뿐 아니라 인문사회학적 측면을 관찰할 수 있어 다양한 연구에서 사용되고 있다. 본 연구에서는 이미지 기반 버티컬 SNS인 인스타그램을 통해 수집된 소셜 데이터를 분석하고 이를 통해 사용자의 공간적 맥락을 바탕으로 소셜 미디어(social media)의 기반을 둔 사용자의 경험을 측정하고자 한다. 따라서 본 연구에서는 사회적 데이터를 통한 경험 공유와 지리적 특성의 경험적 요소 간에 어떤 유형의 공간적 패턴이 존재하는지 탐색하고, 추출 된 데이터를 통해 공유된 경험 구조의 새로운 모형을 고찰하고자 한다.
A new technology has provided the nation, industry, society, and people with innovative and useful functions. National economy and society has been improved through this technology innovation. Despite the benefit of technology innovation, however, since technology society was sufficiently mature, the unintended side effect and negative impact of new technology on society and human beings has been highlighted. Thus, it is important to investigate a risk of new technology for the future society. Recently, the risks of the new technology are being suggested through a large amount of social data such as news articles and report contents. These data can be used as effective sources for quantitatively and systematically forecasting social risks of new technology. In this respect, this paper aims to propose a data-driven process for forecasting and assessing social risks of future new technology using the text mining, 4M(Man, Machine, Media, and Management) framework, and analytic hierarchy process (AHP). First, social risk factors are forecasted based on social risk keywords extracted by the text mining of documents containing social risk information of new technology. Second, the social risk keywords are classified into the 4M causes to identify the degree of risk causes. Finally, the AHP is applied to assess impact of social risk factors and 4M causes based on social risk keywords. The proposed approach is helpful for technology engineers, safety managers, and policy makers to consider social risks of new technology and their impact.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.