동영상 대조비 개선 과정에서 단일 영상을 위해 연구된 대조비 개선 방법들을 사용할 수 있지만, 동영상의 연속성이 고려되지 않으면 원본 동영상에 없는 깜박임을 야기할 수 있다. 또한 동영상의 연속성을 고려하는 경우, 깜박임은 억제할 수 있지만 연속성 때문에 조명의 급격한 변화할 때 불필요한 페이드인/아웃(fade-in/out) 현상이 발생하는 단점이 발생할 수 있다. 본 논문에서는 깜박임과 페이드인/아웃 현상 없이 동영상의 대조비를 개선하는 방법을 제안한다. 제안하는 방법은 Fast Gray-Level Grouping(FGLG)를 사용하여 각 프레임의 대조비를 개선하고, 깜박임을 억제하기 위해 Exponential smoothing 필터를 사용한다. 불필요한 페이드인/아웃 현상을 억제하기 위해서는 S형 함수로 Exponential smoothing 필터의 평활화 비율을 프레임 별로 적응적으로 계산하여 적용한다. 실험에서 제안하는 방법과 기존의 방법들은 6가지 측정 기준을 적용하여 성능을 비교 및 분석한다. 실험 결과, 제안하는 방법은 영상 형태 보존을 측정하는 MSSIM과 깜박임을 측정하는 Flickering score에서 정량적으로 가장 높은 결과를 보여주었으며, 시각적인 품질 비교를 통해 조명 변화에 따른 적응적인 개선을 정성적 결과로 입증하였다.
Nonparametric methods are often used as an alternative to parametric methods to estimate density function and regression function. In this paper we consider improved methods to select the Bezier points in Bezier curve smoothing that is shown to have the same asymptotic properties as the kernel methods. We show that the proposed methods are better than the existing methods through numerical studies.
A new control algorithm using the VSS theory is developed for accurate trajectory control of robot manipulators. This paper focuses on the implementation of VSS controller with smoothing laws in the design of effective tracking control for robotic arms. The VSS controller for multi-linkage robot arm is realized using balance condition and its simplification which possesses powerful smoothing capability to reduce or even remove undesirable chattering and meanwhile keep the robust characteristic to reject system uncertainties. The design principle of selecting different smoothing methods, which aims at achieving trade-off between smoothing and robust behaviors while considering the actual system constraints, is also given and further confirmed through experimental results.
We propose a method of paramete estimation using order-of-magnitude analysis for optimal boundary smoothing in Mean Field Annealing(MFA) technique in this paper. We previously proposed two boundary smoothing methods for consistent object representation in the previous paper, one is using a constratined regulaization(CR) method and the other is using a MFA method. The CR method causes unnecessary smoothing effects at corners. On the other hand, the MFA method method smooths our the noise without losing sharpness of corners. The MFA algorithm is influenced by several parameters such as standard deviation of the noise, the relativemagnitude of prior ter, initial temperature and final temperature. We propose a general parameter esimation method for optimal boundary smoothing using order-of-magnitude analysis to be used for consistent object representation in this paper. In addition, we prove the effectiveness of our parameter estimation and also show the temperature parameter sensitivities of the algorithm.
암석의 물성을 정확히 예측하기 위해서는 물성에 일차적인 효과를 미치는 공극구조에 대한 이해가 매우 중요하며, 정확한 공극구조와 물성시뮬레이션을 이용한 다양한 물성예측 및 변화양상의 정량적 상관관계는 많은 지구물리분야에 응용할 수 있다. 최근 비파괴 구조해석방법, 특히 X선 토모그래피를 이용한 고분해능 스캔 등이 상용화되고 컴퓨터의 성능이 향상됨에 따라 실제의 공극구조를 이용하여 투수율을 예측하는 연구가 시도되고 있다. 본 연구에서는 이러한 연구를 투수율뿐만 아니라 속도와 전기전도도의 영역으로 확장하려는 시도를 하였다. 하지만 토모그래피 방법에서 발생하는 smoothing 효과에 의해 공극구조가 왜곡되고 계산된 물성에 오차가 발생하여, 영상처리기법(sharpening filtering 및 인공신경망 분류법)을 사용하여 smoothing 효과를 제거하는 방법을 시도하였다. 그 결과 가시적으로 향상된 공극구조를 얻을 수 있었고, 투수율 및 전기전도도의 계산값도 이론적 모델링과 유사한 정도의 정확도를 얻을 수 있었다. 하지만 속도의 경우에는 smoothing 효과의 제거에도 불구하고 오차도 상대적으로 크고 향상정도도 매우 미미하였다. 박편과 토모그래피에서 얻어진 공극구조의 비교 연구를 통하여 본 연구에서 사용된 사암의 경우에는 토모그래피에서 얻어진 해상도가 너무 낮은 것을 확인할 수 있었으며, 이러한 이유로 smoothing 효과가 제거되어도 속도예측의 향상은 그리 크지 않은 것으로 나타났다. 결론적으로 본 연구에서 제시된 방법은 토모그램의 smoothing 효과를 효율적으로 제거하였으며 이는 토모그래피방법으로 공극구조를 획득할 때 유용하게 사용될 것으로 기대된다. 또한 속도예측의 경우 토모그램의 해상도가 매우 중요한 인자로 판명되었으며 투수율 예측에 일반적으로 사용되는 해상도보다 최소 세 배 이상의 높은 해상도가 요구되는 것으로 파악되었다.
The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.
본 연구의 목적은 상장기업들이 회계변경을 통해 이익 또는 법인세를 유연화하는가를 알아보고, 회계변경 정보가 주가에 어떠한 영향을 주는가를 분석하는 데 있다. 주가에 영향을 미치는 회계변경 정보로는 법인세절감액, 이익유연화 및 법인세유연화 등이다. 연구결과, 상장기업들은 회계변경을 이익 또는 법인세유연화의 도구로 사용하고 있으며, 이들을 동시에 달성하는 경향이 있음이 밝혀졌다. 그러나 회계변경으로 인한 법인세절감액, 이익유연화 및 법인세유연화 변수는 주가의 변동에는 영향을 미치지 않는 것으로 나타났다. 그러나 비정상수익률을 결산 월부터 이후 3개월간 누적시킨 기간에만 이익유연화 변수는 주가의 변동에 긍정적인 영향을 주지만, 법인세유연화는 부정적인 영향을 주는 것으로 나타났다. 보다 결정적인 결론을 얻기 위해서는 기업의 회계변경에 관한 연구가 많이 이루어져야 할 것으로 판단된다.
본 논문에서는 의료영상의 응용분야로서 방출전산화단증 영상에 사용되는 베이지안 방법을 위한 Gibbs 사전정보의 평활 파라미터를 결정하는 문제를 다룬다. 특히, 광역 하이퍼파라미터(평활 파라미터)가 해외 편향과 분산의 균형을 조절하는 단순 평활사전정보(일명 멤브레인)를 연구 대상으로 한다. 본 논문에서 사용된 방법은 관측된 훈련데이터에 MI. 방법을 적용한 하이퍼파라미터 추정법에 기반을 두며, 이러한 접근방법에 대한 동기에 대하여도 논한다. 멤브레인 사전정보를 위한 평활 파라미터의 경우 단순한 ML 추정법을 적용하여도 파라미터가 쉽게 추정될 수 있음을 보인다.
본 논문에서는 의료영상의 응용분야로서 방출전산화단층 영상에 사용되는 베이지안 방법을 위한 Gibbs 사전정보의 평활 파라미터를 결정하는 문제를 다룬다. 특히, 광역 하이퍼파라미터(평활 파라미터)가 해의 편향과 분산의 균형을 조절하는 단순 평활사전정보(일명 멤브레인)를 연구 대상으로 한다. 본 논문에서 사용된 방법은 관측된 훈련데이터에 ML 방법을 적용한 하이퍼파라미터 추정법에 기반을 두며, 이러한 접근방법에 대한 동기에 대하여도 논한다. 멤브레인 사전정보를 위한 평활 파라미터의 경우 단순한 ML 추정법을 적용하여도 파라미터가 쉽게 추정될 수 있음을 보인다.
잡음제거에 많이 사용되는 평균 스무딩 방법은 곡률이 큰 코너와 잡음을 구분하지 못하므로 코너와 같은 특징점이 이동하거나 없어질 수 있고, 또한 곡선의 수축(shrinking)으로 곡선 내의 면적 오차가 커지는 문제점들이 있다. 이 논문에서는 입력곡선을 다각형 근사화하고 근사화된 다각형의 정보를 스무딩에 이용하여 이 문제점들을 완화시키는 방법을 제안한다. 제안된 방법은 근사화된 다각형과 입력곡선간의 오차와 다각형의 꼭짓점 각도를 이용하여 입력곡선의 각 점마다 개별적으로 스무딩 가중치를 정한다. 이 때 각 점의 가중치는 스무딩 후 점의 이동거리가 그 지역의 잡음크기의 평균에 가까워지도록 정해진다. 제안된 방법으로 잡음이 추가된 곡선을 스무딩하면 스무딩된 곡선이 잡음이 없는 원래곡선에 근접함을 실험으로 확인할 수 있다. 또한 크기가 작은 폐곡선들에 대해 스무딩의 정도를 늘여도 제안된 방법은 기존의 평균 스무딩 방법에 비해 곡선의 면적 축소가 많지 않다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.