• Title/Summary/Keyword: smoothed particle hydrodynamics

Search Result 121, Processing Time 0.026 seconds

Direct imposition of the wall boundary condition for simulating free surface flows in SPH

  • Park, Hyung-Jun;Seo, Hyun-Duk;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.497-518
    • /
    • 2021
  • In this study, a new method for treating the wall boundary in smoothed particle hydrodynamics (SPH) is proposed to simulate free surface flows effectively. Unlike conventional methods of wall boundary treatment through boundary particles, in the proposed method, the wall boundary condition is directly imposed by adding boundary truncation terms to the mass and momentum conservation equations. Thus, boundary particles are not used in boundary modeling. Doing so, the wall boundary condition is accurately imposed, boundary modeling is simplified, and computation is made efficient without losing stability in SPH. Performance of the proposed method is demonstrated through several numerical examples: dam break, dam break with a wedge, sloshing, inclined bed, cross-lever rotation, pulsating tank and sloshing with a flexible baffle. These results are compared with available experimental results, analytical solutions, and results obtained using the boundary particle method.

Numerical Simulation of Two-dimensional Nonlinear Waves on Beaches Using a Smoothed Particle Hydrodynamics Method (SPH법을 이용한 해안에서의 2차원 비선형파 수치시뮬레이션)

  • Kim, Cheol-Ho;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.525-532
    • /
    • 2010
  • In this paper, wave breakers which occur in two dimensional coasts are simulated using a SPH(Smoothed Particle Hydrodynamics) method which represents the movement of fluidic physical volume with particles. As continuative fluid is approximated to the particles, the simulations are performed using fully Lagrangian method without any grid system. Two-dimensional Navier-Stokes equations and continuity equation are used for the numerical simulations. To generate incident waves, a piston type wavemaker is employed. The accuracy of the wave which is numerically generated by the wavemaker is verified by comparing with analytical results. The computations are carried out with various wave heights and slopes. The wave patterns generated through the numerical simulations are compared with several existing experimental and computational results. Agreement between the experimental data and the computation results is comparatively good. Also, the breaker depth index and the breaker height index from the present calculations are compared with the existing experimental results, and the tendency is very similar.

Coin Drop Simulation based on Smoothed Particles Hydrodynamics

  • Kang, Han-bin;Pack, In-seok;Song, Ju-han;Lee, Dong-ug;Park, Min-hyeok;Lee, Seok-soon
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • Smoothed Particle Hydrodynamics(SPH) method uses a grid of historical analysis and is not Lagrangian particles using the grid method. The Navier-Stokes equations were used to solve the viscous flow of the non-compressed. In this study, the numerical analysis of the three-dimensional Coin Drop Simulation using SPH method was performed, and the analysis results are compared with experimental results, and a similar behavior can be seen. The commercial program used was Abaqus/Explicit. SPH method to reduce the error by comparing the existing flow analysis or interpretation of the continuing research is needed in the future. That will enable real-time analysis of material obtained as a result of these numerical simulations similar to the actual flow phenomena, depending on the development of computer graphics technology to show visually. As a result, this method can be applied to the analysis fluid - structure interaction problems in a variety of fields.

SPH Code Development and Validation for Numerical Simulation of Liquid-Liquid Swirl Coaxial Injector (액체-액체 동축형 스월 인젝터의 수치적 모사를 위한 SPH 코드 개발 및 검증)

  • Kim, You-Cheon;Sirotkin, Fedir V.;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.8-22
    • /
    • 2015
  • Most jet spray and atomization simulations are done with the Eulerian method which has inherent disadvantage in representing jet breakups and droplets. Full Lagrangian particles method called Smoothed Particle Hydrodynamics(SPH) is used in this work. We develop the SPH code and perform validations that confirm the suitability of our SPH method for simulating liquid jet atomization problem. Then, we conduct the simulation of liquid-liquid swirl coaxial injector for comparison against the experimental data.

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

Incompressible smoothed particle hydrodynamics modeling of thermal convection

  • Moballa, Burniadi;Chern, Ming-Jyh;Odhiambo, Ernest
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.211-235
    • /
    • 2013
  • An incompressible smoothed particle hydrodynamics (ISPH) method based on the incremental pressure projection method is developed in this study. The Rayleigh-B$\acute{e}$nard convection in a square enclosure is used as a validation case and the results obtained by the proposed ISPH model are compared to the benchmark solutions. The comparison shows that the established ISPH method has a good performance in terms of accuracy. Subsequently, the proposed ISPH method is employed to simulate natural convection from a heated cylinder in a square enclosure. It shows that the predictions obtained by the ISPH method are in good agreements with the results obtained by previous studies using alternative numerical methods. A rotating and heated cylinder is also considered to study the effect of the rotation on the heat transfer process in the enclosure space. The numerical results show that for a square enclosure at, the addition of kinetic energy in the form of rotation does not enhance the heat transfer process. The method is also applied to simulate forced convection from a circular cylinder in an unbounded uniform flow. In terms of results, it turns out that the proposed ISPH model is capable to simulate heat transfer problems with the complex and moving boundaries.

Bird Strike Analysis and Test of Composite Aircraft Radome (항공기 복합재 레이돔에 대한 조류충돌해석 및 시험)

  • Won, Moon-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.319-325
    • /
    • 2019
  • The main purpose of this study is to compare the bird strike analysis result of the radome composed of composite laminate and sandwich structure attached to aircraft with test result. First of all, we generated bird model which has water properties through SPH(Smoothed Particle Hydrodynamics) method. And then bird strike analysis was conducted with initial velocity of bird measured from bird strike test. From analysis result we investigated whether structural failure occurred or not onto the radome and compare maximum displacement of the radome structure with test result. Also reliability of numerical analysis model was confirmed through time-dependent pressure trend on this collision process matched existing research result. Furthermore, we confirmed that failure behavior of the radome can be affected by density of the particles in the bird model.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

Analysis of Hagen-Poiseuille Flow Using SPH

  • Min, Oakkey;Moon, Wonjoo;You, Sukbeom
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This paper shows how to formulate the transient analysis of 2-dimensional Hagen-Poiseuille flow using smoothed particle hydrodynamics (SPH). Treatments of viscosity, particle approximation and boundary conditions are explained. Numerical tests are calculated to examine effects caused by the number of particles, the number of particles per smoothing length, artificial viscosity and time increments for 2-dimensional Hagen-Poiseuille flow. Artificial viscosity for reducing the numerical instability directly affects the velocity of the flow, though effects of the other parameters do not produce as much effect as artificial viscosity. Numerical solutions using SPH show close agreement with the exact ones for the model flow, but SPH parameter must be chosen carefully Numerical solutions indicate that SPH is also an effective method for the analysis of 2-dimensional Hagen-Poiseuille flow.

THE SMOOTHED PARTICLE HYDRODYNAMICS AND THE BINARY TREE COMBINED INTO BTSPH: PERFORMANCE TESTS

  • KIM W. -T.;HONG S. S.;YUN H. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.13-29
    • /
    • 1994
  • We have constructed a 3-dim hydrodynamics code called BTSPH. The fluid dynamics part of the code is based on the smoothed particle hydrodynamics (SPH), and for its Poisson solver the binary tree (BT) scheme is employed. We let the smoothing length in the SPH algorithm vary with space and time, so that resolution of the calculation is considerably enhanced over the version of SPH with fixed smoothing length. The binary tree scheme calculates the gravitational force at a point by collecting the monopole forces from neighboring particles and the multipole forces from aggregates of distant particles. The BTSPH is free from geometric constraints, does not rely on grids, and needs arrays of moderate size. With the code we have run the following set of test calculations: one-dim shock tube, adiabatic collapse of an isothermal cloud, small oscillation of an equilibrium polytrope of index 3/2, and tidal encounter of the polytrope and a point mass perturber. Results of the tests confirmed the code performance.

  • PDF