• Title/Summary/Keyword: smooth boundary

Search Result 252, Processing Time 0.027 seconds

Image Steganographic Method using Variable Length for Data Embedding (가변 길이 자료 은닉이 가능한 이미지 스테가노그래픽 방법 연구)

  • Jung, Ki-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.115-122
    • /
    • 2008
  • Wu and Tsai's pixel-value differencing method and Chang and Tseng's side-match method are based on the theory that the number of bits which can be embedded is determined by the degree of the pixel's smoothness, or its proximity to the edge of the image. If pixels are located in the edge area, they may tolerate larger changes than those in smooth areas. However, both methods are subject to the fall off the boundary problem(FOBP). This study proposes a new scheme that can solve the FOBP. The experimental results demonstrate that the proposed method resolves the problem, and achieves a higher image quality index value than other methods.

Contour based Algorithms for Generating 3D Models from CT Images (CT 이미지로부터 3차원 모델 생성을 위한 contour 기반 알고리즘)

  • 류재헌;김현수;이관행
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.174-182
    • /
    • 2003
  • Recently, medical imaging has taken interest on CAD based solution for anatomical part fabrication or finite element analysis of human body. In principle, contours representing object boundary are obtained through image processing techniques. Surface models are then approximated by a skinning method. For this, various methods should be applied to medical images and contours. The major bottleneck of the reconstruction is to remove shape inconsistency between contours and to generate the branching surface. In order to solve these problems, bi-directional smoothing and the composite contour generation method are proposed. Bi-directional smoothing has advantage of removing the shape inconsistency between contours and minimizing shrinkage effect with a large number of iterations. The composite contour by the proposed method ensures smooth transition in branching region.

Flow Routing in Prismatic Symmetrical Compound Channels by Applications of the Apparent Shear Force (ASF)

  • Chun, Moo-Kap;Jee, Hong-Kee
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.41-56
    • /
    • 1997
  • A new routing computer model for the symmetric compound channel called the ASRMCS(Apparent Shear Force Muskingum-Cunge Method in Symmetry) has been developed. The Muskingum-Cunge routing method is adapted. The Apparent Shear Force (ASF) between the deep main channel and the shallow floodplan flow is introduced while the flow is routed. The nonlinear parameter method is applied. The temporal and spatial increments are varied according to the flow rate. The adaptation of above schemes is tested against the routed hydrographs using the DAMBRK model. The results of general routing practice of Muskingum-Cunge Method(GPMC) are also compared with those of above two models. The results of the new model match remarkably well with those of DAMBRK. The routed hydrographs show a smooth variation from the inflow boundary condition without any distortions caused by the difference of cross-section shape. However, the results of GPMC, showing early rise and fall of routed hydrograph, have considerable differences from those of the ASFMCS and DAMBRK.

  • PDF

SPECTRAL LEGENDRE AND CHEBYSHEV APPROXIMATION FOR THE STOKES INTERFACE PROBLEMS

  • HESSARI, PEYMAN;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.109-124
    • /
    • 2017
  • The numerical solution of the Stokes equation with discontinuous viscosity and singular force term is challenging, due to the discontinuity of pressure, non-smoothness of velocity, and coupled discontinuities along interface.In this paper, we give an efficient algorithm to solve this problem by employing spectral Legendre and Chebyshev approximations.First, we present the algorithm for a problem defined in rectangular domain with straight line interface. Then it is generalized to a domain with smooth curve boundary and interface by employing spectral element method. Numerical experiments demonstrate the accuracy and efficiency of our algorithm and its spectral convergence.

A Study on Improvement of Performance for Perforated Type Total HEX Element (다공형 유로를 적용한 전열교환기 소자의 성능향상에 관한 연구)

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Kim, Jee-Yong;Chu, Euy-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.529-536
    • /
    • 2007
  • The perforated type element for a heat recovery ventilation system has been studied to improve the performance. Four holes of diameter of 6mm are punched out for each flow channel to break the boundary layer development and increase the turbulence. KS cooling and heating conditions and test procedures are applied for study. The efficiencies are compared to those of the typical element with smooth surface. For cooling operations, the temperature, latent and enthalpy efficiencies increase 2.5%, 18% and 8%, respectively. For heating operations, the temperature, latent and enthalpy efficiencies increase 3%, 5% and 3.2%, respectively.

A Study on the Shape Finding and Patterning Procedures for Membrane Structures (막구조의 초기형상 및 재단도 결정알고리즘에 관한 연구)

  • 한상을;이경수;이상주;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.298-305
    • /
    • 1998
  • The purpose of this study is to propose the method of determining the initial fabric membrane structures surface and membrane patterning procedures. Tension structure, such as, fabric membrane structures and cable-net, is stabilized by their initial prestress and boundary condition. The process to find initial structural overall shape of tension structures produced by initial prestress called Shape Finding or Shape Analysis. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress or cable tension. To obtain initial surface of fabric membrane element in large deformation analysis, the membrane element is idealized as cable using a technique with Force-density method. and that result is compared with well-known nonlinear numerical method, such as Newton-raphson method and Dynamic relaxation method. The shape resulting from Force-density method has been dealt with as the initial membrane shape and used patterning procedures.

  • PDF

Inverse Estimation of Surface Temperature Using the RBF Network (RBF Network 를 이용한 표면온도 역추정에 관한 연구)

  • Jung, Bup-Sung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1183-1188
    • /
    • 2004
  • The inverse heat conduction problem (IHCP) is a problem of estimating boundary condition from temperature measurement at one or more interior points. Neural networks are general information processing systems inspired by the connectionist theory of human brain. By properly training the network by the learning rule, the neural network method can handle many non-linear or other complex problems. In this work, neural network is applied to complicated inverse heat conduction problems. Efficiency of the procedure is enhanced by incorporating the radial basis functions (RBF). The RBF is trained faster than other neural network and can find smooth solution. In order to demonstrate the effectiveness of the current scheme, a typical one-dimensional IHCP is considered. At one surface, the temperature as well as the heat flux is known. The unknown temperature of interest is estimated on the other side of the slab. The results from the proposed method based on RBF neural network are compared with the conventional method.

  • PDF

Optimal Design of Dielectric shape and Topology using Smooth Boundary Topology Optimization Method (부드러운 경계 위상 최적설계기법을 이용한 유전체 형상 및 위상 최적설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Nam-Kyung;Kim, Dong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1936-1941
    • /
    • 2009
  • This paper deals with a new methodology for topology optimization in which the topology of the design domain may change during the shape optimization process. To achieve this, the concept of the topological gradient is introduced to compute the sensitivity of an objective function when a small hole is drilled in the domain. Based on shape and topological sensitivity values, the shape and topology of the design domain may be simultaneously changed during design iterations if necessary. To verify the advantages and also to facilitate understanding of the method itself, two electrostatic design problems have been tested by using 2D finite element analysis: the first is the inverse problem of a simple dielectric model and the second is the rotor design of a MEMS actuator.

A Variable PID Controller for Robots using Evolution Strategy and Neural Network (Evolution Strategy와 신경회로망에 의한 로봇의 가변PID 제어기)

  • Choi, Sang-Gu;Kim, Hyun-Sik;Park, Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1014-1021
    • /
    • 1999
  • PID controllers with constant gains have been widely used in various control systems. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a variable PID controller for robot manipulators. We divide total workspace of manipulators into several subspaces. PID controllers in each subspace are optimized using evolution strategy which is a kind of global search algorithm. In real operation, the desired trajectories may cross several subspaces and we select the corresponding gains in each subspace. The gains may have large difference on the boundary of subspaces, which may cause oscillatory motion. So we use artificial neural network to have continuous smooth gain curves to reduce the oscillatory motion. From the experimental results, although the proposed variable PID controller for robots should pay for some computational burden, we have found that the controller is more superior to the conventional constant gain PID controller.

  • PDF

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A SCHRÖDINGER-TYPE SINGULAR FALLING ZERO PROBLEM

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.39 no.3
    • /
    • pp.355-367
    • /
    • 2023
  • Extending [14], we establish the existence of multiple positive solutions for a Schrödinger-type singular elliptic equation: $$\{{-{\Delta}u+V(x)u={\lambda}{\frac{f(u)}{u^{\beta}}},\;x{\in}{\Omega}, \atop u=0,\;x{\in}{\partial}{\Omega},$$ where 0 ∈ Ω is a bounded domain in ℝN, N ≥ 1, with a smooth boundary ∂Ω, β ∈ [0, 1), f ∈ C[0, ∞), V : Ω → ℝ is a bounded function and λ is a positive parameter. In particular, when f(s) > 0 on [0, σ) and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.