• Title/Summary/Keyword: smoke spread

Search Result 124, Processing Time 0.034 seconds

Simulation of Ventilation Capability Effect on The Smoke Spread in Railway Station (제연 팬 용량이 철도역사 연기확산에 미치는 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Hag-Beom;Kim, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.7-13
    • /
    • 2011
  • Simulation study were performed for ventilation capability effect on the smoke spread in the deeply-underground subway station(DUSS). Singeumho station(The line # 5, Depth: 46m) was modeled and were analyzed for smoke-spread speed difference between the originally-designed-ventilation-capacity and the measured-ventilation-capacity. Field test data for actual fan in DUSS was applied as a boundary condition of a simulation. The whole station was covered in this analysis and total of 4 million grids were generated for this simulation. The fire-driven flow was analyzed case by case to compare the smoke-spread effects. In order to enhance the efficiency of calculation, parallel processing by MPI was employed and large eddy simulation method in FDS code was adopted.

  • PDF

Analysis of Smoke Spread Effect Due to The Fire Location in Underground Subway-Station (대심도 역사의 화재위치에 따른 연기확산 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Jin-Ho;Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2885-2890
    • /
    • 2011
  • Simulation study were performed for fire location effect on the smoke spread in the deeply-underground subway station(DUSS). In this research, Shingumho station (The line # 5, Depth: 46m) has been selected as case-study for the analysis of smoke-spread effect with the different fire location. Field test data measured for actual fan in DUSS was applied as a condition of a simulation. The whole station was covered in this analysis and 4 million grids were generated for this simulation. The fire driven flow was analyzed case by case to compare the smoke-spread effect according to the fire location. In order to enhance the efficiency of calculation, parallel processing by MPI was employed and LES(large eddy simulation) method in FDS code was adopted.

  • PDF

A Study of Smoke Exhaust Rate for the Transverse Ventilation with Oversized Exhaust Ports in Road Tunnel (횡류식 대배기구 방식을 적용한 도로터널에서 화재시 최적배연풍량 선정에 관한 연구)

  • Yoo, Ji-Oh;Yoon, Sung-Wook;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.7-12
    • /
    • 2006
  • Recently, the application of transverse ventilation system with oversized exhaust ports has been increased in bidirectional road tunnel in order to improve smoke exhaust ability. Therefore, in this study, for decision of the optimal smoke exhaust rates in the transverse ventilation system, several standards of nations are compared and numerical simulations with variations of exhaust flow rates are carried out in terms of smoke spread distance by FDS ver. 3.1. As results, in the case of no internal longitudinal air velocity in tunnel, the smoke exhaust rate of $80m^{3}/s$ (the smoke generation rate at HRR of 20MW) is sufficient enough to limit the smoke spread within 250m in 6 minutes after the fire. However, in the case of the internal longitudinal air velocity at 2.5m/s, the smoke exhaust rate should be increased $130m^{3}/s$.

The Theory of Smoke Movement by a Fire in an Enclosure (밀폐공간에서의 화재에 의한 연기의 유동 이론)

  • 노재성;유홍선
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.5-9
    • /
    • 1996
  • In foreign country such as U.S.A and Japan, considerable research has been done regarding the spread of smoke in room of fire involvement by using computer. But, in our country it has not been. So, this paper presents a detailed qualitative description of phenomena which occures during typical fire scenarios through numerical analysis. This research, in the view of field model, is focused on finding out the smoke movement and temperature distribution. And it is planned to analyze governing equation including smoke diffusion equation by numerical analysis with finite volume method and non-staggered grid system. The SIMPLE method for pressure-velocity couple and power-law scheme for convection terms are used. It shows that a plume is formed, hot plume is formed, hot plume gases impinge on the ceiling and they spread across it. then, it eventually reaches the bounding walls of the enclosure. It takes 60s for smoke to fill the enclosure.

  • PDF

ANALYSIS OF SMOKE SPREAD EFFECT DUE TO THE FIRE STRENGTH IN UNDERGROUND SUBWAY-STATION (대심도 역사의 화재강도에 따른 연기확산 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Hag-Beom;Kim, Jin-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.373-378
    • /
    • 2011
  • As the number of deeply-underground subway station(DUSS) increases, the safety measures for DUSS have been requested. In this research, Shingumho station (The line # 5, Depth: 46m) has been selected as case-study for the analysis of smoke-spread speed with the different fire strength. Field test data measured for actual fan in DUSS was applied as a condition of a simulation. The whole station was covered in this analysis and total of 4 million grids were generated for this simulation. The fire driven flow was analyzed case by case to compare the smoke-spread effect according to the fire strength. in order to enhance the efficiency of calculation, parallel processing by MPI was employed and large eddy simulation method in FDS code was adopted.

  • PDF

An Experimental Study on Smoke Spread Using a Reduced-scale Subway Building Model (지하역사 축소모델을 이용한 연기확산에 대한 실험적 연구)

  • Kim, Myung-Bae;Choi, Byung-Il
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • Smoke propagation for the Daegu Metro fire is reproduced by a reduced-scale model experiment. The three-story station building was modeled with 1/20-scale, and the tunnel connected to the platform was not completely modeled because of its length. To include the flow resistance the tunnel provides the mesh screens were used in the model. The fire scenario was selected based on the fire growth rate of the metro car seat where the fire initiated. The time when smoke arrived at each compartment in the station building was measured by thermocouples and visualization. Regarding fire ventilation, the air supply that has been accepted as conventional design in a subway metro building intensifies smoke spread. The results show that the whole building was filled with smoke in about 10 minutes in case of no ventilation.

A Study on the Fire Safety of High-rise Apartments Based on Fire Door Switch and Automatic Fire Extinguishing System

  • Zhang, ZeChen;Kong, Ha-Sung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The purpose of this study is to analyse the characteristics and spreading laws of parameters such as fire smoke, concentration of CO, visibility, and temperature at fire scene in high-rise residential buildings under the different conditions of fire doors and automatic fire extinguishing systems. Using Pyrosim to simulate diverse fire scenes in a high-rise apartment with corridors, to analyze the changes in those parameters. The results show that when a fire occurs, closing the fire-fighting corridor will increase the smoke temperature and concentration of CO in the stairwell, and reduce the height and visibility of the smoke layer; the automatic fire extinguishing system effectively suppresses the increase in the temperature of the fire smoke and the sedimentation of the smoke layer. Reasonable setting and operation of the automatic fire extinguishing system could effectively inhibit the spread of fire. Although closing fire corridor can slow down the direct upward spread of smoke through the corridor, it will force the fire smoke into the stairwell, which will seriously affect evacuation through the stairs. Therefore, in order to reduce risks, it is forbidden to close the fire doors of the firefighting corridor and stacking combustible materials in the corridor, Also, intensifying inspections and ensuring the normal operation of the automatic fire extinguishing system are indispensable. Based on the research results, the significance of installing fire-fighting facilities in the construction of high-rise apartments was discussed and proved.

Comparison of Two Different Smoke Extraction Schemes of Transversely Ventilated Tunnel Fire

  • Rie, Dong-Ho;Kim, Hyung-Taek;Yoo, Ji-Oh;Shin, Hyun-Jun;Yoon, Sung-Wook
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.30-35
    • /
    • 2005
  • In case of tunnel fire, one of the most effective facilities to save lives is the smoke control system. In this study, two different smoke extraction schemes of transversely ventilated tunnel were compared. One is the smoke extraction using the fixed exhaust ports on the false ceiling to achieve the uniform and distributed smoke extraction (uniform exhaust). The other is that using the remote controlled smoke extraction where only vents close to the fire is opened whereas the others are closed to enhance the limitation of the smoke spread (localized exhaust). A number of numerical simulations were performed to find out the optimal smoke extraction rate at each smoke extraction scheme to allow the tunnel users to escape to the safe area without endangering their lives by smoke.

Survey for Early Detection Techniques of Smoke and Flame using Camera Images (카메라 영상을 이용한 연기 및 화염의 조기 감지 최신 연구 동향)

  • Kang, Sung-Mo;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.43-52
    • /
    • 2011
  • With the rapid development of technology, skyscrapers are widely spread and they are tightly coupled. If fire occurs in a building, it is easily spread to neighboring buildings, resulting in the large number of victims and property damages. To remove fire disasters, the need for early fire detection techniques is increasing. To detect fire, detecting devices for heat, smoke, and flame have been used widely. However, this paper surveys and presents the latest research which focuses on early smoke and flame detection algorithms and systems with camera's input images. In addition, this paper implements and evaluates the performance of these flame and smoke detection algorithms with several types of movies.