• Title/Summary/Keyword: smartphone measurement

Search Result 144, Processing Time 0.028 seconds

Reliability and Validity of Angle of Trunk Rotation Measurement Using Smartphone and 3D Printing Technology in Scoliosis

  • Geum-Dong Shin;Seong-gil Kim;Kyoung Kim
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.6
    • /
    • pp.283-291
    • /
    • 2022
  • Purpose: The purpose of this study was to compare and analyze the method of measuring the angle of the trunk rotation using a smartphone with 3D smartphone holder compared to a scoliometer, which is a measuring tool used as a method for diagnosing scoliosis in scoliosis patients. Methods: Angle of trunk rotation was measured in 21 subjects diagnosed with scoliosis. scoliometer measurement method, a smartphone measurement method with a 3D smartphone holder, a smartphone blind measurement method with a 3D smartphone holder, a smartphone measurement method without a smartphone holder, a smartphone blind measurement method without a smartphone holder, and a total of five measurement methods were repeated three times for comparison and analysis. Results: The smartphone measurement method with a 3D smartphone holder has excellent intra-rater reliability of angle of trunk rotation (Rater A; ICC3, 2≥0.993, Rater B; ICC3, 2≥0.992). The smartphone blind measurement method with a 3D smartphone holder has excellent inter-rater reliability of angle of trunk rotation (ICC2, 2≥0.968). The scoliometer measurement method had the highest validity (r=0.976) with the smartphone measurement method with a 3D smartphone holder, and the blind measurement method without a smartphone holder had the lowest validity (r=0.886). Conclusion: These findings, the angle of trunk rotation measured by the smartphone measurement method with a 3D smartphone holder in scoliosis patients showed high reliability and validity compared to the scoliometer measurement method.

Smartphone-based Chemistry Instrumentation: Digitization of Colorimetric Measurements

  • Chang, Byoung-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.549-552
    • /
    • 2012
  • This report presents a mobile instrumentation platform based on a smartphone using its built-in functions for colorimetric diagnosis. The color change as a result of detection is taken as a picture through a CCD camera built in the smartphone, and is evaluated in the form of the hue value to give the well-defined relationship between the color and the concentration. To prove the concept in the present work, proton concentration measurements were conducted on pH paper coupled with a smartphone for demonstration. This report is believed to show the possibility of adapting a smartphone to a mobile analytical transducer, and more applications for bioanalysis are expected to be developed using other built-in functions of the smartphone.

Intra- and Inter-Rater Reliability of Measuring Passive Range of Shoulder Motion With Smartphone and Goniometer in Patients With Stroke (뇌졸중 환자의 수동적 어깨 관절 가동범위 측정에 관한 스마트폰과 측각기의 측정자내, 측정자간 신뢰도 연구)

  • Park, Il-Woo;Lim, One-Bin;Park, Kyue-Nam;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • The purpose of this study were to determine the intra-rater and inter-rater reliability of shoulder passive range of motion measurement using the "Clinometer + bubble level", a smartphone application and to compare with the intra-rater and inter-rater reliability of measurement using a goniometer. Twenty six patients with stroke were recruited for this study. Two raters measured the passive range of motion of four types of shoulder movements (forward flexion; FF, abduction; ABD, external rotation at $90^{\circ}$ abduction; ER90 and internal rotation at $90^{\circ}$ abduction; IR90) using a goniometer and a smartphone to determine within-day inter-rater reliability. A retest session was performed thirty minutes later to determine within-day intra-rater reliability. The reliability was assessed using intraclass correlation coefficients (ICC) and the standard error of measurement (SEM). The ICC (2,1) for the inter-rater reliabilities of the goniometer and smartphone were good in FF and ABD [ICC (2,1)=.75~.87] and excellent in ER90 [ICC (2,1)=.90~.95]. The intra-rater reliabilities for the goniometer and smartphone were good or more than good, with an ICC (3,1) value >.75, the exception was IR90 measured by rater 2 on the smartphone. These results suggest that smartphone could be used as an alternative method tool for measurement of passive shoulder range of motion in patients with stroke.

A Study on Cable Tension Estimation Using Smartphone Built-in Accelerometer and Camera (스마트폰 내장 가속도계와 카메라를 이용한 케이블 장력 추정에 관한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.773-782
    • /
    • 2022
  • Estimation of cable tension through proper measurements is one of the essential tasks in evaluating the safety of cable structures. In this paper, a study on cable tension estimation using the built-in accelerometer and camera in a smartphone was conducted. For the experimental study, visual displacement measurement using a smartphone camera and acceleration measurement using a built-in accelerometer were performed in the cable-stayed bridge model. The estimated natural frequencies and transformed tensions from these measurements were compared with the theoretical values and results from the normal visual displacement method. Through comparison, it can be seen that the error between the method using the smartphone and the normal visual displacement is sufficiently small to be acceptable. It has also been shown that those errors are much smaller than the difference between the values calculated by the theoretical model. These results show that the deviation according to the type of measurement method is not large and it is rather important to use an appropriate mathematical model. In conclusion, in the case of cable tension estimation, it can be said that the visual displacement measurement and acceleration using a smartphone can be a sufficiently applicable method, just like the normal visual displacement method. It is also noteworthy that the smartphone accelerometer has a larger magnitude error and has more limitations such as high-frequency sampling instability compared to the visual displacement method, but shows almost the same performance as the visual displacement method in this cable tension estimation.

Validity and Reliability of the Knee Joint Proprioceptive Sensory Measurements using a Smartphone (스마트폰을 이용한 무릎관절 고유수용성 감각 측정의 타당도와 신뢰도 검증)

  • Kim, Myung-Chul;Kim, Nam-Jae;Lee, Min-Soo;Moon, So-Ra
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.4
    • /
    • pp.15-23
    • /
    • 2015
  • PURPOSE: We aims to promote the development of proprioception measurement using smartphones, goniometers, and laser pointers as compared to the conventional use of electrogoniometer measurement. METHODS: Measurements using an electrogoniometer were previously proved to be reliabile and valid. Among E-university students, 20 who had no fracture, operation history, or inflammatory arthritis were examined. These subjects had not performed regular exercise in the past 3 months. Proprioception measurements were performed using four different measurement tools, three times per day, for test-retest analysis. RESULTS: No notable test-retest differences were noted for any of the measurement methods (P>0.05). With regard to the test-retest reliability for each measurement method, we observed that the readings from both the electrogoniometer and smartphone have high reliability (ICC>0.80), whereas the readings from the laser pointer have moderate reliability (ICC>0.60). When assessing the concurrent validity between electrogoniometers with individual measurements, we did not observe any notable difference between the smartphone and electrogoniometer (P>0.05) and these tools in fact showed high correlation (r>0.60, P<0.05) and a moderate reliability (ICC>0.60). Moreover, there was no notable difference in between electrogoniometers and laser pointers (P<0.05). CONCLUSION: CONCLUSION: The findings of this suggested that proprioception can be measured by using smart-phones, and proved that this method has sufficient credibility. Moreover, we noted that the concurrent validity with smartphones was high in comparison with the conventional electrogoniometer, which also indicates the validity and credibility. Based on these findings, we conclude that the measurement of proprioception by using a smartphone can be widely adopted.

A Comparative Study on Measurement of Physical Activity between Smartphone App and Self-Reported Questionnaire (스마트폰 앱과 자가보고식 설문지의 신체활동 측정 비교)

  • Suh, Minhee;Seo, Kyoungsan
    • Journal of muscle and joint health
    • /
    • v.29 no.2
    • /
    • pp.91-99
    • /
    • 2022
  • Purpose: The purpose of this study was to examine the level of agreement between smartphone apps and self-reported physical activity questionnaires. Methods: Quantitative methods were used to assess the correlation and agreement between the number of steps counted by a smartphone app and the amount of walking reported in a survey. A total of 29 adults who used smartphones were recruited from a university, and their step counts from their smartphone pedometers and responses to the international physical activity questionnaire (IPAQ) were collected over a 10-week period. Results: An analysis of 170 data pairs with Spearman's rho correlation and a Bland-Altman plot revealed a positive correlation between step counts from the smartphone app and walking activity from the IPAQ. The Bland-Altman plot also demonstrated the agreement to be improved among female participants. Conclusion: In assessing walking activity, smartphone pedometer apps showed good correlation with the IPAQ and improved agreement with the IPAQ among women. Therefore, it is suggested that the participants' gender and activity intensity, as well as the accuracy of measurement tools, should be considered in an evaluation of the delivery of physical activity promotion programs through smartphone apps.

A Study on Respiration Measurement Using a Smartphone (스마트폰을 이용한 호흡 측정에 관한 연구)

  • Kang, Sung Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.108-112
    • /
    • 2018
  • In this paper, a respiration measurement method using FMCW signal for off-the-shelf smartphone is presented and investigated. The proposed algorithm transmits FMCW signal periodically instead of transmitting continuously so that one can reduce the power consumption from speaker in smartphone and the algorithm complexity. In order to eliminate the clicking noise generated when transmitting FMCW signal, Tukey window with ${\alpha}=0.01$ is applied to prevent the noise from being heard. An application program for Android OS which can transmit FMCW signal through speaker and record the reflected signals through MIC has been developed. Since the total duration of the signal transmission is set to 20msec per 1 second for the experiments, the power consumption can be decreased by 80% compared to the continuous transmission. It was confirmed that the clicking noise is inaudible as long as a smartphone is located at more than 10cm from ears. In the experiments on a sleeping child, the breathing signal of about 0.27Hz was measured.

Design of Measurement Algoritms in the Smart CamRuler (스마트 CamRuler 계측 알고리즘 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.149-156
    • /
    • 2013
  • With a rapid growth of smartphone technologies, various applications are developed and diffused actively nowadays. Especially, interesting applications using camera module in a smartphone are developed continuously, mobile users are able to use various useful mobile services in humdrum life. In this paper, we design and implement measurement algorithms which precisely measure the object taken by the camera module in a smartphone. We use 3-axis gyro accelerometer sensor in a smartphone to get the distance, incline and rotation angle in a real time when we take a picture of shooting object and can obtain precise size of it in the picture image. The measurement algorithms proposed in this paper are analyzed and evaluated by a simulation study.

Reliability Study of Hip Range of Motion Measurement by Smartphone Inclinometer (스마트폰 경사계를 사용한 엉덩관절 가동범위의 측정 신뢰도 연구)

  • Yang, Hoesong;Jeong, Chanjoo;Yoo, Youngdae;Bae, Seahyun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Purpose : The purpose of this study was to evaluate inter-tester reliability and Intra-tester reliability about range of motion(ROM) measurement of hip joint with smartphone inclinometer. Method : Six observers performed goniometric and smartphone inclinometer measurements of various hip movements, including both active ROM for flexion, extension, external rotation, internal rotation. Measurements were performed in the right hip of fifty normal subjects. All measures were performed three times for evaluating reliability of observer. Inter- and intra-observer reliabilities were evaluated using the intraclass correlation coefficient(ICC). Result : The results were as follows, inter-observer reliability ICC value showed .948-.974 in smartphone inclinometer. And showed .781-.827 in goniometer. Intra-observer reliability ICC value showed .653-.992 in smartphone inclinometer. And showed .613-.854 in goniometer. Conclusion : Smartphone inclinometer are portable and widely available tools that are mostly reliable and valid for assessing active hip range of motion, with potential use when a goniometer is not available.

Real-time Heart Rate Measurement based on Photoplethysmography using Android Smartphone Camera

  • Hoan, Nguyen Viet;Park, Jin-Hyeok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.234-243
    • /
    • 2017
  • With the development of smartphone technologies enable photoplethysmogram (PPG) acquisition by camera and heart rate (HR) measurement. This papers presents improved algorithm to extract HR from PPG signal recorded by smartphone camera and to develop real-time PPG signal processing Android application. 400 video samples recorded by Samsung smartphone camera are imported as input data for further processing and evaluating algorithm on MATLAB. An optimized algorithm is developed and tested on Android platform with different kind of Samsung smartphones. To assess algorithm's performance, medical device Beurer BC08 is used as reference. According to related works, accuracy parameters includes 90% number of samples that has relative errors less than 5%, Person correlation (r) more than 0.9, and standard estimated error (SEE) less than 5 beats-per-minutes (bpm).