• Title/Summary/Keyword: smart-learning

Search Result 1,825, Processing Time 0.023 seconds

EXCUTE REAL-TIME PROCESSING IN RTOS ON 8BIT MCU WITH TEMP AND HUMIDITY SENSOR

  • Kim, Ki-Su;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.21-27
    • /
    • 2019
  • Recently, embedded systems have been introduced in various fields such as smart factories, industrial drones, and medical robots. Since sensor data collection and IoT functions for machine learning and big data processing are essential in embedded systems, it is essential to port the operating system that is suitable for the function requirements. However, in embedded systems, it is necessary to separate the hard real-time system, which must process within a fixed time according to service characteristics, and the flexible real-time system, which is more flexible in processing time. It is difficult to port the operating system to a low-performance embedded device such as 8BIT MCU to perform simultaneous real-time. When porting a real-time OS (RTOS) to a low-specification MCU and performing a number of tasks, the performance of the real-time and general processing greatly deteriorates, causing a problem of re-designing the hardware and software if a hard real-time system is required for an operating system ported to a low-performance MCU such as an 8BIT MCU. Research on the technology that can process real-time processing system requirements on RTOS (ported in low-performance MCU) is needed.

A Study on the Data Collection and Convergence of Career Advisor System Using AI (AI를 활용한 대학생 진로 조언 시스템 모델 및 데이터 수집과 융합에 대한 연구)

  • Kim, Jong-yul;Ro, Kwang-hyun
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.177-185
    • /
    • 2019
  • The purpose of this study is to investigate the causes of career problems, which are the biggest problems of Korean university students, and to solve them by using case studies of domestic and global universities, I would like to suggest a career advisor system model for college students. It is most important to collect advice and learning data to solve the career problems of college students by utilizing information technology such as data analysis and AI. Research has not been actively pursued because the university has very limited internal data to advise on career problems. In this paper, we study the data types and methods of college students' career advice, and propose a career advisor counseling system for college students.

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

Lifesaver: Android-based Application for Human Emergency Falling State Recognition

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.267-275
    • /
    • 2021
  • Smart application is developed in this paper by using an android-based platform to automatically determine the human emergency state (Lifesaver) by using different technology sensors of the mobile. In practice, this Lifesaver has many applications, and it can be easily combined with other applications as well to determine the emergency of humans. For example, if an old human falls due to some medical reasons, then this application is automatically determining the human state and then calls a person from this emergency contact list. Moreover, if the car accidentally crashes due to an accident, then the Lifesaver application is also helping to call a person who is on the emergency contact list to save human life. Therefore, the main objective of this project is to develop an application that can save human life. As a result, the proposed Lifesaver application is utilized to assist the person to get immediate attention in case of absence of help in four different situations. To develop the Lifesaver system, the GPS is also integrated to get the exact location of a human in case of emergency. Moreover, the emergency list of friends and authorities is also maintained to develop this application. To test and evaluate the Lifesaver system, the 50 different human data are collected with different age groups in the range of (40-70) and the performance of the Lifesaver application is also evaluated and compared with other state-of-the-art applications. On average, the Lifesaver system is achieved 95.5% detection accuracy and the value of 91.5 based on emergency index metric, which is outperformed compared to other applications in this domain.

One-stop Platform for Verification of ICT-based environmental monitoring sensor data (ICT 기반 환경모니터링 센서 데이터 검증을 위한 원스탑 플랫폼)

  • Chae, Minah;Cho, Jae Hyuk
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Existing environmental measuring devices mainly focus on electromagnetic wave and eco-friendly product certification and durability test, and sensor reliability verification and verification of measurement data are conducted mainly through sensor performance evaluation through type approval and registration, acceptance test, initial calibration, and periodic test. This platform has established an ICT-based environmental monitoring sensor reliability verification system that supports not only performance evaluation for each target sensor, but also a verification system for sensor data reliability. A sensor board to collect sensor data for environmental information was produced, and a sensor and data reliability evaluation and verification service system was standardized. In addition, to evaluate and verify the reliability of sensor data based on ICT, a sensor data platform monitoring prototype using LoRa communication was produced, and the test was conducted in smart cities. To analyze the data received through the system, an optimization algorithm was developed using machine learning. Through this, a sensor big data analysis system is established for reliability verification, and the foundation for an integrated evaluation and verification system is provide.

Optimization Technique to recognize Hand Motion of Wrist Rehabilitation using Neural Network (신경망을 활용한 손목재활 수부 동작 인식 최적화 기법)

  • Lee, Su-Hyeon;Lee, Young-Keun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This study is a study to recognize hand movements using a neural network for wrist rehabilitation. The rehabilitation of the hand aims to restore the function of the injured hand to the maximum and enable daily life, occupation, and hobby. It is common for a physical therapist, an occupational therapist, and a security tool maker to form a team and approach a doctor for a hand rehabilitation. However, it is very inefficient economically and temporally to find a place for treatment. In order to solve this problem, in this study, patients directly use smart devices to perform rehabilitation treatment. Using this will be very helpful in terms of cost and time. In this study, a wrist rehabilitation dataset was created by collecting data on 4 types of rehabilitation exercises from 10 persons. Hand gesture recognition was constructed using a neural network. As a result, the accuracy of 93% was obtained, and the usefulness of this system was verified.

A Study on Self-medication for Health Promotion of the Silver Generation

  • Oh, Soonhwan;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.82-88
    • /
    • 2020
  • With the development of medical care in the 21st century and the rapid development of the 4th industry, electronic devices and household goods taking into account the physical and mental aging of the silver generation have been developed, and apps related to health and health are generally developed and operated. The apps currently used by the silver generation are a form that provides information on diseases by focusing on prevention rather than treatment, such as safety management apps for the elderly living alone and methods for preventing diseases. There are not many apps that provide information on foods that have a direct effect and nutrients in that food, and research on apps that can obtain information about individual foods is insufficient. In this paper, we propose an app that analyzes food factors and provides self-medication for health promotion of the silver generation. This app allows the silver generation to conveniently and easily obtain information such as nutrients, calories, and efficacy of food they need. In addition, this app collects/categorizes healthy food information through a textom solution-based crawling agent, and stores highly relevant words in a data resource. In addition, wide deep learning was applied to enable self-medication recommendations for food. When this technique is applied, the most appropriate healthy food is suggested to people with similar eating patterns and tastes in the same age group, and users can receive recommendations on customized healthy foods that they need before eating. This made it possible to obtain convenient healthy food information through a customized interface for the elderly through a smartphone.

BLE-based Indoor Positioning System design using Neural Network (신경망을 이용한 BLE 기반 실내 측위 시스템 설계)

  • Shin, Kwang-Seong;Lee, Heekwon;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.75-80
    • /
    • 2021
  • Positioning technology is performing important functions in augmented reality, smart factory, and autonomous driving. Among the positioning techniques, the positioning method using beacons has been considered a challenging task due to the deviation of the RSSI value. In this study, the position of a moving object is predicted by training a neural network that takes the RSSI value of the receiver as an input and the distance as the target value. To do this, the measured distance versus RSSI was collected. A neural network was introduced to create synthetic data from the collected actual data. Based on this neural network, the RSSI value versus distance was predicted. The real value of RSSI was obtained as a neural network for generating synthetic data, and based on this value, the coordinates of the object were estimated by learning a neural network that tracks the location of a terminal in a virtual environment.

Data Processing of AutoML-based Classification Models for Improving Performance in Unbalanced Classes (불균형 클래스에서 AutoML 기반 분류 모델의 성능 향상을 위한 데이터 처리)

  • Lee, Dong-Joon;Kang, Ji-Soo;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.49-54
    • /
    • 2021
  • With the recent development of smart healthcare technology, interest in daily diseases is increasing. However, healthcare data has an imbalance between positive and negative data. This is caused by the difficulty of collecting data because there are relatively many people who are not patients compared to patients with certain diseases. Data imbalances need to be adjusted because they affect performance in ongoing learning during disease prediction and analysis. Therefore, in this paper, We replace missing values through multiple imputation in detection models to determine whether they are prevalent or not, and resolve data imbalances through over-sampling. Based on AutoML using preprocessed data, We generate several models and select top 3 models to generate ensemble models.

Prediction Service of Wild Animal Intrusions to the Farm Field based on VAR Model (VAR 모델을 이용한 야생 동물의 농장 침입 예측 서비스)

  • Kadam, Ashwini L.;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.628-636
    • /
    • 2021
  • This paper contains the implementation and performance evaluation results of a system that collects environmental data at the time when the wild animal intrusion occurred at farms and then predicts future wild animal intrusions through a machine learning-based Vector Autoregression(VAR) model. To collect the data for intrusion prediction, an IoT-based hardware prototype was developed, which was installed on a small farm located near the school and simulated over a long period to generate intrusion events. The intrusion prediction service based on the implemented VAR model provides the date and time when intrusion is likely to occur over the next 30 days. In addition, the proposed system includes the function of providing real-time notifications to the farmers mobile device when wild animals intrusion occurs in the farm, and performance evaluation was conducted to confirm that the average response time was 7.89 seconds.