• Title/Summary/Keyword: smart textile products

Search Result 41, Processing Time 0.026 seconds

Under-Thread Sewing Yarn Sensing Monitoring System of Sewing Machine for Smart Manufacturing (스마트 제조를 위한 봉제기의 밑실 센싱 모니터링 시스템)

  • Lee, Dae-Hee;Lee, Jae-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • The ICT concept has been introduced to realize a highly productive smart factory and respond to the demand for small quantity and mass production between textile processes. ICT convergence monitoring system that can produce high productivity textile products by improving product development period, cost, quality and delivery time through ICT based production and optimization of manufacturing process is needed. In this paper, we propose and implement a system design that senses the amount of remaining sewing material using a non-contact sensor that can be mounted on a sewing machine and displays it on a display using IOT-based LATTE-PANDA board.

Analysis of the Necessary Mechanical Properties of Embroiderable Conductive Yarns for Measuring Pressure and Stretch Textile Sensor Electrodes (생체 신호 측정 압력 및 인장 직물 센서 전극용 자수가 가능한 전도사의 필요 물성 분석)

  • Kim, Sang-Un;Choi, Seung-O;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.49-56
    • /
    • 2021
  • In this study, we investigated the necessary mechanical properties of conductive multifilament yarns for fabricating the electrodes of biosignal measurement pressure and stretch textile sensors using embroidery. When electrodes and circuits for smart wearable products are produced through the embroidery process using conductive multifilament yarns, unnecessary material loss is minimized, and complex electrode shapes or circuit designs can be produced without additional processes using a computer embroidering machine. However, because ordinary missionary threads cannot overcome the stress in the embroidery process and yarn cutting occurs, herein, we analyzed the S-S curve, thickness, and twist structure, which are three types of silver-coated multifilament yarns, and measured the stress in the thread of the embroidery simultaneously. Thus, the required mechanical properties of the yarns in the embroidery process were analyzed. In the actual sample production, cutting occurred in silver-coated multifilament rather than silver-coated polyamide/polyester, which showed the lowest S-S curve. In the embroidery process, the twist was unwound through repetitive vertical movement. Further, we fabricated a piezoresistive pressure/tension sensor to measure gauge factor, which is an index for measuring biological signals. We confirmed that the sensor can be applied to the fabrication of embroidery electrodes, which is an important process in the mass production of smart wearable products.

A Study on the Effects of Electromagnetic Wave on Human Body - The Variation of Electroencephalogram by Blocking Electromagnetic Wave Materials and Aural Stimuli - (전자파가 인체에 미치는 영향 - 전자파 차폐소재와 청각자극에 나타난 뇌파전위의 변화 -)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.503-510
    • /
    • 2004
  • The study is one of fundamental researches for the development of future smart clothing and textile products with blocking properties from electromagnetic waves by analyzing human physical symptoms in using electromagnetic products in such an environments. Among various textiles in the experiment, nano silver has shown the best blocking performance from electromagnetic waves, which decreases depending on the distance. The power spectrum distribution and the incidence of electroencephalogram between blocking materials and aural stimuli has shown that, ${\beta}$, wave appeared to be active in all channels except for $T_4$, whereas all waves appeared with processed materials and especially with nano silver silk(NSS), ${\alpha}$, ${\beta}$, ${\theta}$, ${\gamma}$ waves appeared active in all regions. As for the brain mapping of ${\alpha}$ wave according to time, there found a strong activity in $P_3$, $P_4$ of the parietal lobe, with all materials on all time regions. With silk nylon metal(SNM) and NSS, it appeared strong in $F_3$, $F_4$ as well. As for ${\beta}$, wave, the activity appeared strong in frontal lobe before 7min. 30sec, where it tends to diminish abruptly in 7min. 30sec. to 13min. 30sec. region. After 13min., it regained gradually. With NSS, it appeared strong in all areas except for the farthest $T_4$. The appearance of ${\nu}$ wave can be deduced as it can affect human body with its toxic property while the silver particles become nano-sized. Therefore, the study conducted with human participants requires a proper particle size of it which would not penetrate cellular tissues and a proper binder and binding treatment for it, to prevent the physical fatigues and the potential diseases. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

A Study on the Effects of Electroencephalogram of Blocking Electromagnetic Wave Materials by useing the Nano Silver (나노 은을 이용한 전자파 차폐 직물이 뇌파에 미치는 영향)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.6
    • /
    • pp.810-814
    • /
    • 2004
  • This study is one of the fundamental researches for the development of future smart clothing and textile products using silver(Ag) nano powder. Our study was focused on the blocking or insulating effects of nano-processed textiles from electromagnetic waves. Also, for the surveying of the actual effect to human body, we measure the variation of electroencephalogram which is an indication of human physical symptoms. Among various textiles in this experiment, nano silver processed case has shown the best blocking performance from the electromagnetic waves, which decreases depending on the distance. As a reference model of working environment, we setup the visual stimuli object on the computer that is a source of electromagnetic wave. The power spectrum distribution and the incidence of electroencephalogram was measured. The analysed data has shown that, with nano-processed textiles, ${\beta}$ wave does not appear very often where ${\beta}$ wave appears only to illustrate the stable states of human's body. However, as for the materials without nano processing, the ratio of ${\gamma}$ waves in the total level of electroencephalogram becomes higher in spite of short exposure to visual stimuli in work environment, which shows that the worker becomes stressed. The ${\beta}$ wave electroencephalogram of all materials is drawn in calcarine fissure of occipital lobe to show the convergent distribution, and stronger with block-processed Nano Silver Silk(NSS). The study based on the potential risks of human diseases such as physical fatigue by electromagnetic waves, and has shown that the application of Nano Silver textile for human uses require a proper particle size of it which would not penetrate cellular tissues, and a proper binder and binding treatment for it. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

Analysis of Design Elements and Heating System of Domestic and Foreign Commercial Electrical Heated Clothing (국내외 발열의류의 디자인 요소 및 발열시스템 분석)

  • Kim, Kyuyeon;Kim, Siyeon;Lim, Daeyoung;Ha, Jisoo;Jeong, Wonyoung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.273-289
    • /
    • 2021
  • This study aimed to examine the appearance of heated clothing in relation to fashion trends by analyzing constructive components of clothing using product images and actual products. A total of 91 images of domestic and foreign heated clothing products were collected, and a product analysis conducted with six parameters of item classification, namely, concept and image, silhouette, color, number of heating elements, and heating parts. In addition, an in-depth analysis was carried out with 11 products among them, while focusing on further detailed components of the design and heating system. As a result, the overall exterior design of domestic products has been changed from outdoor clothing to daily clothing reflecting the current design trend. Compared with domestic products, foreign products showed a diverse assortment and a greater number of heating regions per individual item of clothing. The current heating system commonly consists of a heating element, power source, controller board, and wires, although the existence and type of switches differed from product to product. To develop a more efficiently heated clothing to expand the market, the design, ease of use, safety, consumer preference, heating functionality, and durability should be considered. Along with design recommendations for future heated clothing, this study also provides a practical guide to the technical aspects of the design of the components of heated clothing.

Artificial Intelligent Clothing Embedded Digital Technologies

  • Lim, Ho-Sun;Lee, Duck-Weon;Shim, Woo-Sub
    • Journal of Fashion Business
    • /
    • v.14 no.6
    • /
    • pp.70-83
    • /
    • 2010
  • With the rapid development of science and technology and the increased preference by consumers for high-function products, many products are being developed through the fusion of technologies in different industries. Among such fusion technologies, digital clothing which combines clothing with computer functions is being examined as a new growth item. The objectives of this study are to examine the concept, history, development, and market of intelligent clothing, in order to discuss future directions for the development of digital clothing technology. intelligent clothing (wearable computers) originated in the 1960s from the concept of separating computing equipment and attaching it to the body. This technology was studied intensively from the early 1980s and to the early 1990s. In the late 1990s, studies on wearable computers began to develop intelligent/digital clothing that was more comfortable and beneficial to users. Depending on the user and purpose, intelligent/digital clothing is now being developed and used in diverse industrial areas that include sports, medicine, military, entertainment, daily life, and business. Many experts forecast a huge growth potential for the digital textile/clothing market, and predict the fastest market growth in the field of healthcare/medicine. There exists a need to find solutions for many related technological, economic, and social issues for the steady dissemination and advancement of intelligent/digital clothing in various industries. Further, research should be continued on effective fusion technologies that reflect human sensitivity and that increase user convenience and benefits.

The Recent Tendency of Fashion Textiles by 3D Printing (3D프린팅을 이용한 텍스타일 제조 기술동향)

  • Kim, Seul Gi;Kim, Hye Rim
    • Fashion & Textile Research Journal
    • /
    • v.20 no.2
    • /
    • pp.117-127
    • /
    • 2018
  • As an application and potential of 3D printing (3DP) accelerates in diverse industries, the use of 3DP is also increasing in the textile and fashion industry. Since the fashion trend is rapidly changing and there are high demands of customized products for customer segments, research on manufacturing of 3DP textiles has become more important. 3DP textiles have different physical and chemical properties depending on a various 3D printing technologies or materials. However, it is difficult to fabricate 3DP textiles that meets demand of garment such as flexibility, wearability, tensile strength and abrasion resistance so that 3DP in fashion industry relatively has a narrow range of applications compared to other industries. The aim of this paper is to provide a trend of research about manufacturing 3DP textiles by analyzing previous studies according to textile's properties. This paper classifies the five types of 3DP textiles and analyses systematically. First, 3DP textiles blended with existing textiles. Second, 3DP textiles utilizing the structural design of existing textiles. Third, 3DP textiles designed with continuous units. Fourth, 3DP textiles utilizing material properties. Fifth, 3DP textiles based on smart materials. Based on this analysis, future research of manufacturing 3DP textiles needs are identified and discussed.

The Trends of Eco-Friendly Textiles Using Big Data from Newspaper Articles (신문기사 빅데이터를 활용한 친환경 섬유의 추이에 관한 연구)

  • Nam Beom Cho;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.95-107
    • /
    • 2024
  • The development of environmentally friendly products and services has become a trend, and the development and utilization of eco-friendly textiles with economic value is gaining attention as a new business model. Analyzing and identifying trends and developments in eco-friendly textiles can provide important information and insights for various stakeholders such as companies, governments, and consumers to help them achieve sustainable growth. For this study, we collected and analyzed data from newspaper articles mainly covering the textile and fashion sector from 2000 to June 2023. A total of 12,331 articles containing the keyword 'eco-friendly textiles' were collected, and after performing morphological analysis on the extracted data, Latent Dirichlet Allocation and Dynamic Topic Modeling analysis were performed to identify topics by year. The results of the study are expected to provide strategic guidance and insights for the sustainable development of the textile industry, thereby helping to promote the research, development, and commercialization of eco-friendly textiles.

Manufacture of Recycled PET E-Textile by Plasma Surface Modification and CNT Dip-Coating (플라즈마 표면 개질과 CNT 함침공정을 통한 고전도성의 재생PET사 전자섬유)

  • Jun-hyeok Jang;Sang-un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • This study aims to create a highly conductive E-textile made by recycling PET with a Dip-coating process. PET fiber with hydrophobic properties is characterized by the difficulty in imparting great conductivity when both Virgin and Recycled are made of electronic fibers through a Dip-coating process. To advance the effectiveness of the Dip-coating process, a sample made of recycled PET was surface modified for 50 w 5 minutes and 10 minutes employing a Covance-2mprfq model from FEMTO SCIENCE. After that, the sample was immersed in an SWCNT dispersion (.1 wt%, Carbon Co., Ltd.) for 5 minutes, and then dip coating was conducted to allow the solution to permeate well into the sample through a padder (DAELIM lab). After the procedure was completed, the resistance measurement was measured with a multimeter at both ends and then accurately remeasured with a wider electrode. As a result of this contemplation, it was affirmed that great conductivity might be given through an impregnation process through the plasma surface modification. When the surface modification was performed for 10 minutes, the resistance was reduced by up to 2.880 times. Dependent on the results of this research, E-fibers employed in the smart wearable sector can also be made of recycled materials, improving smart wearable products that can save oil resources and reduce carbon emissions.

A Study on the Development of Luminous Smart Bag for Smartphone Users (스마트폰 사용자를 위한 발광 스마트 백 개발)

  • Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.24 no.1
    • /
    • pp.15-28
    • /
    • 2020
  • The purpose of this study was to develop and propose creative smart bags in emotional e-textiles using LEDs that inform smartphone users of motion-induced luminescence and ringing of cell phones. The LED light-emitting operation tasks produced in the study were applied to each of the three design smart bags, setting the five cases of luminance by a call initiated, absent phone, rejecting answering phone, texting, and motion-induced luminescence. In the male laptop bags of LED luminous images using wappen, 10 LEDs could be separated by a total of three pins to display the luminous mode, and all 10 LEDs became a total of five luminous patterns, including all that illuminate and those that illuminate randomly. E-wappen rendered the motif a strong sense of visibility and performed six roles on phone rings and texting. To develop a women's tote bag, we did a laser cut and attached the leather strips and placed 10 triangular LEDs to form a geometric LED e-textile. It provides the possibility of transforming simple design from traditional fashion into a more interesting and various smart designs. An entertainment smart bag using graphic design was constructed by applying a tilt sensor to look like a light in the night sky by shaking and moving the bag. The graphic design and composition of LEDs indicate that LEDs and fashion item are applied in harmony rather than heterogeneous, enabling them to be applied as fashion-oriented wearable smart products.