• Title/Summary/Keyword: smart sensing

Search Result 614, Processing Time 0.027 seconds

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

An Establishment of the GIS, uIT, RS based Smart Disaster Systems (GIS, uIT, RS기반 스마트 방재시스템 구축방안)

  • Oh, Jong-woo
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.2
    • /
    • pp.87-106
    • /
    • 2010
  • This research focused on the effect of the GIS, uIT, and RS based smart disaster systems. Ubiquitous IT strongly involved in intelligent analysis for the natural disasters. Remote sensing technologies, such as hyper-spectral imaging, MODIS, LiDAR, Radar, and optical imaging processes, can contribute many means of investigation for the natural and unnatural problems in the atmosphere, hydrosphere, and lithosphere. Recent IT trends guides abundant smart solutions, such as automatic sensing using USN, RFID, and wireless communication devices. Smart monitoring systems using intelligent LBSs will produce many ways of checking, processes, and controls for the human safeties. In results, u-smart GIS, uIT, and RS based disaster systems must be using ubiquitous IT involved smart systems using intelligent GIS methods.

Experimental assessment of the piezoelectric transverse d15 shear sensing mechanism

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.567-585
    • /
    • 2014
  • The piezoelectric transverse $d_{15}$ shear sensing mechanism is firstly assessed experimentally for a cantilever smart sandwich plate made of a piezoceramic axially poled patched core and glass fiber reinforced polymer composite faces. Different electrical connections are tested for the assessment of the sensor performance under a varying amplitude harmonic (at 24 Hz) force. Also, the dynamic response of the smart sandwich composite structure is monitored using different acquisition devices. The obtained experimentally sensed voltages are compared to those resulting from the benchmark three-dimensional piezoelectric coupled finite element simulations using a commercial code where realistic features, like equipotential conditions on the patches' electrodes and mechanical updating of the clamp, are considered. Numerically, it is found that the stiffness of the clamp, which is much softer than the ideal one, has an enormous influence on the sensed voltage of its adjacent patch; therefore, sensing with the patch on the free side would be more advantageous for a cantilever configuration. Apart from confirming the latter result, the plate benchmark experimental assessment showed that the parallel connection of its two oppositely poled patches has a moderate performance but better than the clamp side patch acting as an individual sensor.

Networked Robots using ATLAS Service-Oriented Architecture in the Smart Spaces

  • Helal, Sumi;Bose, Raja;Lim, Shin-Young;Kim, Hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.288-298
    • /
    • 2008
  • We introduce new type of networked robot, Ubiquitous Robotic Companion (URC), embedded with ATLAS Service-oriented architecture for enhancing the space sensing capability. URC is a network-based robotic system developed by ETRI. For years of experience in deploying service with ATLAS sensor platform for elder and people with special needs in smart houses, we need networked robots to assist elder people in their successful daily living. Recently, pervasive computing technologies reveals possibilities of networked robots in smart spaces, consist of sensors, actuators and smart devices can collaborate with the other networked robot as a mobile sensing platform, a complex and sophisticated actuator and a human interface. This paper provides our experience in designing and implementing system architecture to integrate URC robots in pervasive computing environments using the University of Florida's ATLAS service-oriented architecture. In this paper, we focus on the integrated framework architecture of URC embedded with ATLAS platform. We show how the integrated URC system is enabled to provide better services which enhance the space sensing of URC in the smart space by applying service-oriented architecture characterized as flexibility in adding or deleting service components of Ubiquitous Robotic Companion.

An Automatic Signature Verification Algorithm for Smart Devices

  • Kim, Seong-Hoon;Fan, Yunhe;Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper, we propose a stable automatic signature verification algorithm applicable to various smart devices. The proposed algorithm uses real and forgery data all together, which can improve the verification rate dramatically. As a tool for signature acquisition in a smart device, two applications, one using touch with a finger and the other using a pressure-sensing-stylus pen, are developed. The verification core is based on SVM and some modifications are made to include the characteristics of signatures. As shown in experimental results, the minimum error rate was 1.84% in the SVM based method, which can easily defeat 4.38% error rate with the previous parametric approach. Even more, 2.43% error rate was achieved with the features excluding pressure-related features, better than the previous approach including pressure-related features and only about 0.6% more error than the best result, which means that the proposed algorithm can be applied to a smart device with or without pressure-sensing-stylus pens and used for security purposes.

Intelligent Rain Sensing and Fuzzy Wiper Control Algorithm for Vision-based Smart Windshield Wiper System

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1694-1699
    • /
    • 2003
  • A windshield wiper system plays a key part in assuring the driver's safety during the rainfall. However, because the quantity of rain and snow vary irregularly according to time and the velocity of the automobile, a driver changes wiper speed and interval from time to time to secure enough visual field in the traditional windshield wiper system. Because a manual operation of windshield wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming a direct cause of traffic accidents. Therefore, this paper presents the basic architecture of a vision-based smart windshield wiper system and a rain sensing algorithm that regulates speed and interval of the windshield wiper automatically according to the quantity of rain or snow. This paper also introduces a fuzzy wiper control algorithm based on human's expertise, and evaluates the performance of the suggested algorithm in an experimental simulator.

  • PDF

Development of a smart wireless sensing unit using off-the-shelf FPGA hardware and programming products

  • Kapoor, Chetan;Graves-Abe, Troy L.;Pei, Jin-Song
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.69-88
    • /
    • 2007
  • In this study, Field-Programmable Gate Arrays (FPGAs) are investigated as a practical solution to the challenge of designing an optimal platform for implementing algorithms in a wireless sensing unit for structuralhealth monitoring. Inherent advantages, such as tremendous processing power, coupled with reconfigurable and flexible architecture render FPGAs a prime candidate for the processing core in an optimal wireless sensor unit, especially when handling Digital Signal Processing (DSP) and system identification algorithms. This paper presents an effort to create a proof-of-concept unit, wherein an off-the-shelf FPGA development board, available at a price comparable to a microprocessor development board, was adopted. Data processing functions, including windowing, Fast Fourier Transform (FFT), and peak detection, were implemented in the FPGA using a Matlab Simulink-based high-level abstraction tool rather than hardware descriptive language. Simulations and laboratory tests were carried out to validate the design.

Developing Performance Indicator for Smart-Exhibition (스마트 전시환경의 전시회 성과평가를 위한 지표 개발)

  • Choe, Jae-Ho;Moon, Hyun-Sil;Kim, Jae-Kyeong
    • Journal of Information Technology Services
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2014
  • Exhibitions are important sales promotional method commonly used by the marketer of industrial products. Exhibition utilized as a means of effective marketing tools, company's interest and demand is rising. Especially in recent years, visitors' activity within the exhibition space can be monitored in real time by applying near-field sensing technology such as RFID, NFC, RQ code. Exhibition organizers are also applying the near-field sensing technology in order to attract the participating companies and visitors. With the introduction of near-field sensing technology, the exhibition has been a lot of changes occur in the exhibition environment. However absence of performance indicators to measure new exhibition environment which adopt ubiquitous technology, still the exhibition performance is not properly measured. In this study, we use the Delphi technique with the performance indicators based on previous research, and propose performance indicators for measuring achievement of exhibition in the smart-exhibition environment.

Wired and Wileless Dualization Algorithm for Tension Sensing Smart Fence System (스마트 철조망 장력센서를 위한 유무선 이중화 알고리즘)

  • Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1071-1076
    • /
    • 2015
  • This paper proposed an efficient algorithm for tension sensing smart fence system with wireless sensor transmission module installation and alarming services. The wired transmission system demonstrates high accuracy and low latency, but the cost is expensive and transmission error may occur. For these reasons, this paper presented to use wireless transmission communication using Zigbee module technology in order to decrease delay and latency and solve the battery issues.

Digital Magnetic Compass With Smart Correction Function - Recent Experimental Results and Further Works -

  • Yim, Jeong-Bin;Shim, Yeong-Ho;Kim, Chang-Kyeong;Choi, Gi-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.29-36
    • /
    • 2004
  • The paper describes recent experimental results on the development of Digital Magnetic Compass (DMC), which can provide smart automatic correction functions to the magnetic interferences. The design methodology of magnetic sensing circuit with ring-core fluxgate sensor is represented. The performance results of the sensing circuits are discussed with error analysis by polynomial regressions. As test results, the sensing circuit filtered only the second harmonic signal that is proportional to the direction of earth's magnetic field, and it leads to the obtainment of bearing information. In addition, the total residual errors of DMC can be analyzed by the adoption of polynomial regressions. It shown that the possibility of high precise DMC, in the future.

  • PDF