• Title/Summary/Keyword: smart safety technology

Search Result 626, Processing Time 0.023 seconds

Collision Avoidance Sensor System for Mobile Crane (전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발)

  • Kim, Ji-Chul;Kim, Young Jea;Kim, Mingeuk;Lee, Hanmin
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

A Study on Performance Analysis of Companies Adopting and Not Adopting Win-win Smart Factories (상생형 스마트공장 도입기업과 미도입기업의 성과분석에 관한 연구)

  • Jungha Hwang;Taesung Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2024
  • A Smart factories are systems that enable quick response to customer demands, reduce defect rates, and maximize productivity. They have evolved from manual labor-intensive processes to automation and now to cyber-physical systems with the help of information and communication technology. However, many small and medium-sized enterprises (SMEs) are still unable to implement even the initial stages of smart factories due to various environmental and economic constraints. Additionally, there is a lack of awareness and understanding of the concept of smart factories. To address this issue, the Cooperation-based Smart Factory Construction Support Project was launched. This project is a differentiated support project that provides customized programs based on the size and level of the company. Research has been conducted to analyze the impact of this project on participating and non-participating companies. The study aims to determine the effectiveness of the support policy and suggest efficient measures for improvement. Furthermore, the research aims to provide direction for future support projects to enhance the manufacturing competitiveness of SMEs. Ultimately, the goal is to improve the overall manufacturing industry and drive innovation.

A Study on the Application of Smart Safety Helmets and Environmental Sensors in Ships (선박 내 스마트 안전모 및 환경 센서 적용에 관한 연구)

  • Do-Hyeong Kim;Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Due to the characteristics of ship structure, the compartment structure is complicated and narrow, so safety accidents frequently occur during the work process. The main causes of accidents include structural collisions, falling objects, toxic substance leaks, fires, explosions, asphyxiation, and more. Understanding the on-site conditions of workers during accidents is crucial for mitigating damages. In order to ensure safety, the on-site situation is monitored using CCTV in the ship, but it is difficult to prevent accidents with the existing method. To address this issue, a smart safety helmet equipped with location identification and voice/video communication capabilities is being developed as a safety technology. Additionally, the smart safety helmet incorporates environmental sensors for temperature, humidity, vibration, noise, tilt (gyro sensor), and gas detection within the work area. These sensors can notify workers wearing the smart safety helmet of hazardous situations. By utilizing the smart safety helmet and environmental sensors, the safety of workers aboard ships can be enhanced.

Analysis of Component Technology for Smart City Platform

  • Park, Chulsu;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2019
  • In order to solve the urban problems caused by the increase of the urban population, the construction of smart city applying the latest technology is being carried out all over the world. In particular, we will create a smart city platform that utilizes data generated in the city to collect and store and analyze, thereby enhancing the city's continuous competitiveness and resilience and enhancing the quality of life of citizens. However, existing smart city platforms are not enough to construct a platform for smart city as a platform for solution elements such as IoT platform, big data platform, and AI platform. To complement this, we will reanalyze the existing overseas smart city platform and IoT platform in a comprehensive manner, combine the technical elements applied to it, and apply it to the future Korean smart city platform. This paper aims to investigate the trends of smart city platforms used in domestic and foreign countries and analyze the technology applied to smart city to study smart city platforms that solve various problems of the city such as environment, energy, safety, traffic, environment.

A Study on the Satisfaction Analysis of Smart Traffic Safety Systems using Importance-Performance Analysis (IPA를 이용한 스마트 교통안전 시스템의 만족도 분석 연구)

  • Kiman Hong;Jonghoon Kim;Jungah Ha;Gwangho Kim;Jonghoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.754-768
    • /
    • 2022
  • Purpose: The purpose of this study is to derive improvements through user satisfaction analysis for the smart traffic safety system being applied to improve traffic safety. Method: A survey-based IPA analysis was used to derive system and service improvements for groups of drivers and pedestrians. Result: As a result of the analysis, both drivers and pedestrian groups showed that Quadrant 1(Keep up the Good Work) was 'Perception of risk information', and Quadrant 3(Low Priority) was 'Reliability of warning information'. On the other hand, 'AI display suitability', which was analyzed as Quadrant 1(Keep up the Good Work) in the driver group, was found to be Quadrant 3(Low priority) in the pedestrian group. Conclusion: Satisfaction factors for smart pedestrian safety systems may vary depending on users, and it is judged that user-centered system construction and service provision are necessary.

An Impact of Project Performance by Using Smart Construction Technology (스마트 건설기술 활용에 따른 프로젝트 성과 영향에 관한 연구)

  • Kim, Taehoon;Cho, Kyuman
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.291-292
    • /
    • 2023
  • In line with the advent of the 4th industrial revolution, project performance such as construction productivity and safety is being improved through the use of various smart technologies in construction projects. However, most studies focus on case analysis according to technology application, and research on performance impact and evaluation methods is insufficient. However, the performance impact of the use of smart construction technology can vary greatly depending on the capabilities and level of support of the organization using the technology. Therefore, this study aims to establish factors that affect the performance of smart construction technology utilization at the organizational level and analyze the performance impact relationship. The results of this study will provide the basis for establishing an organizational system and evaluating performance for the efficient use of smart construction technology in the future.

  • PDF

A Study on the Applications of Information and Communication Technology for 4th Industrial Revolution in Safety and Health of Workers (4차 산업혁명을 위한 ICT 기술의 산업안전보건 적용 사례 분석)

  • Seong, Yun-Hui;Jung, Kihyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2019
  • The applications of information and communication technology (ICT) into real industrial fields are getting great attentions in recent years. More and more industrial practitioners and scientific researchers are conducting studies and trying to adopt the technologies into diverse industrial fields. The purpose of this study is to review the technologies such as big data and smart sensors and to provide application cases in order to facilitate grafting the 4th industrial revolutionary technologies onto the safety and health systems. Based on the comprehensive reviews on literature, reports, and industrial cases, we found that big data technology has been used in industries for investigating work related disease. In addition, digital image technology and drone have been applied to establish safety system in construction industry. Lastly, some companies have tried to apply the technologies to build their own safety and health system.

Design for Smart Safety Management System: from Worker and Mobile Equipment Perspectives (시스템엔지니어링 기반의 스마트 안전관리 시스템설계: 작업자와 이동 장비를 중심으로)

  • Kim, Hyoung Min;Yoon, Sung Jae;Hong, Dae Guen;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2015
  • Industrial safety is one of the crucial agenda for Government as well as Manufacturing Industry. To cope with the needs, a great deal of policies and technical implementation have been proposed and implemented. With a great increasing attention on the Industry 4.0 and Smart Factory, industrial safety has received as a crucial agenda by the manufacturing industry in particular. Up until now, almost all of them have been made from the environmental aspects, rather than operator or workers. In this paper, we present our research results how to increase the workers' safety via smart factory technology, such as IoT and CPS. Our approach has been to see the problem from SE perspectives, to draw the real issues from the various stakeholders, and define how to solve the problem based on the emerging technologies. The developed systems can give conceptual framework for the 'smart' industrial safety system by providing solution architecture for how to monitor the location of workers, and moving equipments, and generate solutions how to avoid safety problems between them if detected.

Support Project for the Establishment of a Smart Factory for the Win-win between Large and Small Businesses Performance Analysis of the Adopting Company (대·중소 상생형 스마트공장 구축 지원 사업 도입기업에 대한 성과분석)

  • Seo, Hongeil;Kim, Taesung
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.135-142
    • /
    • 2022
  • The smart factory is an important system that can reduce defects, maximize productivity, and respond to customer needs, from the labor-intensive era of traditional small and medium-sized manufacturing companies through the automation era to CPS using ICT. However, small and medium-sized manufacturers often fall short of the basic stage due to economic and environmental constraints, and there are many companies that do not even recognize the concept of a smart factory. In this situation, to expand the smart factory of small and medium-sized enterprises, the project to support the establishment of a smart factory for the win-win between large and small enterprises. The win-win smart factory construction support project provides a customized differentiation program support project according to the size and level of the company for all domestic manufacturing SMEs regardless of whether or not they are dealing with Samsung. In this study, we analyze the construction status and introduction performance of companies participating in the win-win smart factory support project to find out whether they have been helpful in management and to find efficient ways to improve support policies, and to suggest the direction of continuous support projects to improve the manufacturing competitiveness of SMEs in the future.

Construction site disaster risk analysis method Using big data Considering individual work units of construction partner company (협력업체 작업 단위를 고려한 빅데이터 기반 건설현장 재해위험도 분석 방안)

  • Choi, Hochang;Lee, Jung-chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.265-266
    • /
    • 2023
  • Recently, many disasters have occurred due to poor management of construction site. In addition, as legal regulations on safety management at construction sites are strengthened, its importance is being further emphasized. In relation to smart safety management technology, a study was introduced to build an analysis model through various safety-related data collected within construction companies. This model derives quantitative disaster risk about the site level through information related to past disasters and near misses. However, construction work is performed separately by work group of each partner company. There is a limitation in that individual workers cannot directly experience this analysis information. In this study, we propose a method to derive the safety disaster risk of individual work units from disaster risk of the site level. We expect that this study to be helpful for smart safety management technology of construction sites.

  • PDF