• Title/Summary/Keyword: smart operation mode

Search Result 56, Processing Time 0.023 seconds

Coordinated State-of-Charge Control Strategy for Microgrid during Islanded Operation

  • Kim, Jong-Yul;Jeon, Jin-Hong;Kim, Seul-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.824-833
    • /
    • 2012
  • In this paper, a coordinated state-of-charge (SOC) control strategy for the energy storage system (ESS) operating under microgrid islanded mode to stabilize the frequency and voltage was proposed. The proposed SOC control loop is made up of PI controller, which uses a SOC state of the energy storage system as an input and an auxiliary reference value of secondary control as an output. The SOC controller changes the auxiliary reference value of secondary control to charge or discharge the ESS. To verify the proposed control strategy, PSCAD/EMTDC simulation study was performed. The simulation results show that the SOC of the ESS can be regulated at the desired operating range without degrading the stabilizing control performance by proposed coordinated SOC control method.

Delay time Analysis of Asynchronous RIT Mode MAC in Wi-SUN (Wi-SUN에서 비동기 RIT모드 MAC의 지연시간 분석)

  • Dongwon Kim;Mi-Hee Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN (Wireless Smart Utility Network) Alliance proposed a Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e Receiver Initiated Transmission(RIT) Mode Media Access Control (MAC) in terms of throughput and latency, and looks at considerations for efficient operation. RIT mode shows that as the check interval becomes longer, delay time and throughput decrease. It was shown that as the traffic load increases, if the RIT check interval is shortened, the delay time can be shortened and throughput can be increased. RIT mode has the advantage of low power consumption and has neutral characteristics between IEEE802.15.4 and CSL mode in terms of delay time and throughput.

Delay Time Analysis of Asynchronous CSL Mode MAC in Wi-SUN (Wi-SUN에서 비동기 CSL모드 MAC의 지연시간 분석)

  • Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.23-28
    • /
    • 2021
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN(Wireless Smart Utility Network) Alliance proposed Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e CSL(Coordinated Sampled Listening) Mode MAC(Media Access Control) in terms of latency and looks at considerations for efficient operation.

Design and calibration of a wireless laser-based optical sensor for crack propagation monitoring

  • Man, S.H.;Chang, C.C.;Hassan, M.;Bermak, A.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1543-1567
    • /
    • 2015
  • In this study, a wireless crack sensor is developed for monitoring cracks propagating in two dimensions. This sensor is developed by incorporating a laser-based optical navigation sensor board (ADNS-9500) into a smart wireless platform (Imote2). To measure crack propagation, the Imote2 sends a signal to the ADNS-9500 to collect a sequence of images reflected from the concrete surface. These acquired images can be processed in the ADNS-9500 directly (the navigation mode) or sent to Imote2 for processing (the frame capture mode). The computed crack displacement can then be transmitted wirelessly to a base station. The design and the construction of this sensor are reported herein followed by some calibration tests on one prototype sensor. Test results show that the sensor can provide sub-millimeter accuracy under sinusoidal and step movement. Also, the two modes of operation offer complementary performance as the navigation mode is more accurate in tracking large amplitude and fast crack movement while the frame capture mode is more accurate for small and slow crack movement. These results illustrate the feasibility of developing such a crack sensor as well as point out directions of further research before its actual implementation.

Operation limits analysis of PW206C turboshaft engine In manual mode (PW206C 터보축 엔진의 수동운용범위 분석)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.339-342
    • /
    • 2007
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot inputs the engine power directly and the pitch governor controls the propeller pitch to maintain the propeller RPM. The manual back-up system of PW206C engine is used for the engine power control of Smart UAV. Engine performance estimation program is used to predict the control range of power lever arm(PLA) angle according to the variation of flight altitude and speed. These data provide a guide for the engine control in manual mode operation.

  • PDF

A Study on the Characteristic Analysis of the Pest Control Drones Using Smart Operating Mode (스마트운영모드를 활용한 방제드론 특성분석에 관한 연구)

  • Lim, Jin-Taek
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.108-113
    • /
    • 2019
  • In relation to $4^{th}$ industrial revolution, it is required to build a smart agricultural system using the pest control drones, which are emerging fast these days as a role to support pest control work of farmers and improve aging issues in farming. However, the absence of accurate criteria on management of the pest control drones and the effect of pesticide application is leading to damage to crops by pesticides. The extreme shortage of analysis of management of the pest control drones and relevant studies, and big differences in pest control efficiency depending on the operation skills of controllers are the biggest reasons for the damage. Therefore, this paper suggests a basic study on agricultural pest control drone operation system buildup to make out working schedules and calculate the dosage of pesticide by understanding the features of the pest control drones properly based on the control using smart operating mode.

Application of a Dynamic Positioning System to a Maritime Autonomous Surface Ship (MASS)

  • Kim, Jeong-Min;Park, Hye Ri
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.435-440
    • /
    • 2022
  • The development and introduction of a Maritime Autonomous Surface Ship (MASS) are some of the most important changes leading to the fourth industrial era in the maritime area. The term 'MASS' refers to a ship operating independently, without human intervention, to reduce maritime accidents caused by human errors. Recent UK findings MASS also noted that particularly the dynamic positioning system will be considered to apply as newly function to a MASS. The DP system, a ship system developed decades ago and used for specific purposes like offshore operations, provides various functions to facilitate the accurate movements of the vessel, and operators can make decisions within the DP system, in addition to the ordinary ship system. In this paper, it would like to present the connection and application method with the main technical elements of the DP system in connection with the main technology of the DP system to achieve the safe operation of a MASS. In particular, among various position reference systems, the capability plot function of DP system, and the "follow target" mode in the operation mode are attractive functions that can contribute to the safe operation of autonomous ships.

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.

Verification of mechanical failure mode through corrosion test of a pump for soil sterilizer injection

  • Han-Ju Yoo;Jooseon Oh;Sung-Bo Shim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.817-828
    • /
    • 2023
  • Deteriorating soil physical properties and increasing soil pathogens due to the continuous cultivation of field crops are the leading causes of productivity deterioration. Crop rotation, soil heat treatment, and chemical control are used as pest control methods; however, each has limitations in wide application to domestic agriculture. In particular, chemical control requires improvement due to direct exposure to sterilizing solution, odor, and high-intensity work. To improve the overall domestic agricultural environment, the problems of time and cost, such as field maintenance and cultivation scale, must be addressed; therefore, mechanization technology for chemical control must be secured to derive improvement effects in a short period. Most related studies are focused on the control effect of the DMDS (dimethyl disulfide) sterilizer, and research on the performance of the sterilization spray device has been conducted after its introduction in Korea, but research on the corrosion suitability of the material is lacking. This study conducted a corrosion test to secure the corrosion resistance of a soil sterilizer injection pump, and a mechanical failure mode by corrosion by the material was established. The corrosion test comprised operation and neglect tests in which the sterilizing solution was circulated in the pump and remained in the pump, respectively. As a result of the corrosion test, damage occurred due to the weakening of the mechanical strength of the graphite material, and corrosion resistance to aluminum, stainless steel, fluororubber, and PPS (polyphenylene sulfide) materials was confirmed.

Soft switched Synchronous Boost Converter for Battery Dischargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 2020
  • In this paper, we proposed a soft switched synchronous boost converter, which can perform discharging the battery, is proposed. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss because of changing the rectified diode to MOSFET with a low on resistance. In this reason, the efficiency of the converter can be greatly improved in high frequency. In this paper, the battery discharger with a switching frequency of 100 kHz, has been designed. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery discharge had soft switching characteristics. The simulation results have confirmed that the proposed battery discharger had soft switching and synchronous operation characteristics.