• Title/Summary/Keyword: smart mining

Search Result 261, Processing Time 0.023 seconds

A Benchmark of Open Source Data Mining Package for Thermal Environment Modeling in Smart Farm(R, OpenCV, OpenNN and Orange) (스마트팜 열환경 모델링을 위한 Open source 기반 Data mining 기법 분석)

  • Lee, Jun-Yeob;Oh, Jong-wo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.168-168
    • /
    • 2017
  • ICT 융합 스마트팜 내의 환경계측 센서, 영상 및 사양관리 시스템의 증가에도 불구하고 이들 장비에서 확보되는 데이터를 적절히 유효하게 활용하는 기술이 미흡한 실정이다. 돈사의 경우 가축의 복지수준, 성장 변화를 실시간으로 모니터링 및 예측할 수 있는 데이터 분석 및 모델링 기술 확보가 필요하다. 이를 위해선 가축의 생리적 변화 및 행동적 변화를 조기에 감지하고 가축의 복지수준을 실시간으로 감시하고 분석 및 예측 기술이 필요한데 이를 위한 대표적인 정보 통신 공학적 접근법 중에 하나가 Data mining 이다. Data mining에 대한 연구 수행에 필요한 다양한 소프트웨어 중에서 Open source로 제공이 되는 4가지 도구를 비교 분석하였다. 스마트 돈사 내에서 열환경 모델링을 목표로 한 데이터 분석에서 고려해야할 요인으로 데이터 분석 알고리즘 도출 시간, 시각화 기능, 타 라이브러리와 연계 기능 등을 중점 적으로 분석하였다. 선정된 4가지 분석 도구는 1) R(https://cran.r-project.org), 2) OpenCV(http://opencv.org), 3) OpenNN (http://www.opennn.net), 4) Orange(http://orange.biolab.si) 이다. 비교 분석을 수행한 운영체제는 Linux-Ubuntu 16.04.4 LTS(X64)이며, CPU의 클럭속도는 3.6 Ghz, 메모리는 64 Gb를 설치하였다. 개발언어 측면에서 살펴보면 1) R 스크립트, 2) C/C++, Python, Java, 3) C++, 4) C/C++, Python, Cython을 지원하여 C/C++ 언어와 Python 개발 언어가 상대적으로 유리하였다. 데이터 분석 알고리즘의 경우 소스코드 범위에서 라이브러리를 제공하는 경우 Cross-Platform 개발이 가능하여 여러 운영체제에서 개발한 결과를 별도의 Porting 과정을 거치지 않고 사용할 수 있었다. 빌트인 라이브러리 경우 순서대로 R 의 경우 가장 많은 수의 Data mining 알고리즘을 제공하고 있다. 이는 R 운영 환경 자체가 개방형으로 되어 있어 온라인에서 추가되는 새로운 라이브러리를 클라우드를 통하여 공유하기 때문인 것으로 판단되었다. OpenCV의 경우 영상 처리에 강점이 있었으며, OpenNN은 신경망학습과 관련된 라이브러리를 소스코드 레벨에서 공개한 것이 강점이라 할 수 있다. Orage의 경우 라이브러리 집합을 제공하는 것에 중점을 둔 다른 패키지와 달리 시각화 기능 및 망 구성 등 사용자 인터페이스를 통합하여 운영한 것이 강점이라 할 수 있다. 열환경 모델링에 요구되는 시간 복잡도에 대응하기 위한 부가 정보 처리 기술에 대한 연구를 수행하여 스마트팜 열환경 모델링을 실시간으로 구현할 수 있는 방안 연구를 수행할 것이다.

  • PDF

Introduction of the M(i,j,k)BCP and Risk Assessment of Underground Limestone Mine (재난관리체계(M(i,j,k)BCP) 제안과 석회석광산의 리스크 평가)

  • Lee, Seong Min;Kim, Sun-Myung;Lee, Yeon Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.383-392
    • /
    • 2012
  • This study introduces $M_{(i,j,k)}BCP$ (Mining Business Continuity Planning) which is the smart management system of mine disasters to achieve the safe and eco-friendly mining. Where, 'i' is mine kinds, 'j' is mining processes, and 'k' is risks at process respectively. By specifically setting 'i=1=limestone mine', this study also suggests that $M_{(i,j,k)}BCP$ is the smart management system of limestone mine. Mining risks used in this study were obtained from professional survey and literature review. This study classified these risks by five different mining processes and reduced risk numbers approximately 60 to 26. And they were all allocated into $M_{(i,j,k)}BCP$ and assessed. To do assess risks, this study used four risk indexes which are probability, casualty, facility loss, and discontinuity respectively. By the results of the assessment of risks, results could be four specific groups based on their causes and impacts. In addition, one of the results showed that the most possible risks at limestone mine was the roof-fall and rock-fall in digging process. This result means that $M_{(1,2,1)}BCP$ should be established as a first priority at limestone mine.

Study on the ICT Device Safety System Application Examples in Mines (광산에서의 ICT 장비 활용 및 안전시스템 운용 사례 연구)

  • Kim, Seung-Jun;Ko, Young-Hun;Kim, Jung-Gyu;Seo, Man-Keun;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.194-202
    • /
    • 2022
  • An increased number of cases have occurred in applying ICT technology in the resource development field due to factors such as safety, eco-friendliness, and low cost since the 2000s. In Korea, the 2nd mining master plan specified the significance of converging the full cycle of mining and ICT, while the 3rd mining master plan highlighted ICT and smart mining such as supporting the supply of an ICT mining device and introducing demonstrational smart mining. This study introduces the application of an ICT device and safety system operation in the Jangseong underground mine of Korea Cement Co., Ltd. Currently, Jangseong mine combines two different kinds of 3D equipment including the handheld 3D scanner and multi-station that provides both the measurement and 3D scanning to perform a 3D measurement of the mine. Taken from the 3D measurement of the mine, it is now possible to identify any hazardous areas and abnormalities in different directions and analyze the safety of the crown pillar between two stopes in different level. Besides, the real-time location tracking and communications system have established highly efficient rescue and evacuation plans to effectively deal with any accidents in the mine.

The Fourth Industrial Revolution Core Technology Association Analysis Using Text Mining (텍스트 마이닝을 활용한 4차 산업혁명 핵심기술 연관분석)

  • Ryu, Jae-Han;You, Yen-Yoo
    • Journal of Digital Convergence
    • /
    • v.16 no.8
    • /
    • pp.129-136
    • /
    • 2018
  • This study analyzed technology application field and technology transfer type related to the 4th industrial revolution using frequency, visualization, and association analysis of text mining of Big Data. The analysis was conducted between the last three years (2015 - 2017) registered with the NTB of KIAT transfer technology database was utilized. As a result of analysis, First, First, transfer technologies called core technologies of the Fourth Industrial Revolution are a lot of about robots, 3D, autonomous driving, and wearables. Second, as the year go by, transfer technolgy registration such as IoT, Cloud, VR is increasing. Third, the results of the association analysis of technology transfer type are as follows. IoT and VR showed preference for technology trading and licensing, autonomous driving technology trading, wearable licensing, robots preferring technology cooperation, licensing, and technology trading.

Extraction method of Stay Point using a Statistical Analysis (통계적 분석방법을 이용한 Stay Point 추출 연구)

  • Park, Jin Gwan;Oh, Soo Lyul
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.26-40
    • /
    • 2016
  • Recent researches have been conducted for a user of the position acquisition and analysis since the mobile devices was developed. Trajectory data mining of location analysis method for a user is used to extract the meaningful information based on the user's trajectory. It should be preceded by a process of extracting Stay Point. In order to carry out trajectory data mining by analyzing the user of the GPS Trajectory. The conventional Stay Point extraction algorithm is low confidence because the user to arbitrarily set the threshold values. It does not distinguish between staying indoors and outdoors. Thus, the ambiguity of the position is increased. In this paper we proposed extraction method of Stay Point using a statistical analysis. We proposed algorithm improves position accuracy by extracting the points that are staying indoors and outdoors using Gaussian distribution. And we also improve reliability of the algorithm since that does not use arbitrarily set threshold.

Analyzing the Trend of Wearable Keywords using Text-mining Methodology (텍스트마이닝 방법론을 활용한 웨어러블 관련 키워드의 트렌드 분석)

  • Kim, Min-Jeong
    • Journal of Digital Convergence
    • /
    • v.18 no.9
    • /
    • pp.181-190
    • /
    • 2020
  • The purpose of this study is to analyze the trends of wearable keywords using text mining methodology. To this end, 11,952 newspaper articles were collected from 1992 to 2019, and frequency analysis and bi-gram analysis were applied. The frequency analysis showed that Samsung Electronics, LG Electronics, and Apple were extracted as the highest frequency words, and smart watches and smart bands continued to emerge as higher frequency in terms of devices. As a result of the analysis of the bi-gram, it was confirmed that the sequence of two adjacent words such as world-first and world-largest appeared continuously, and related new bi-gram words were derived whenever issues or events occurred. This trend of wearable keywords will be useful for understanding the wearable trend and future direction.

Data mining approach for identifying factors impacting construction accident costs: from indirect expenses perspectives

  • Ayesha Munira CHOWDHURY;Eun-Ju HA;Jae-ho CHOI
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.319-326
    • /
    • 2024
  • Construction projects account for a significant proportion of workplace hazards globally. While construction cost reports typically emphasize direct accident costs such as treatment expenses, nursing care costs, or disability benefits, indirect factors like work interruption loss costs or consolation costs are frequently overlooked, because it is relatively difficult to estimate those factors in advance. Recognizing and accurately estimating the indirect costs factors associated with construction accidents would not only shed light on the monetary impact these incidents have on overall project costs but also would enable to estimate the total accident cost in advance. The current study seeks to identify factors influencing indirect costs, which ultimately govern the total accident cost, through a data mining approach. A survey was conducted in domestic construction companies, resulting in a dataset of 1038 accident records collected from construction sites. First, statistical analysis was performed to uncover characteristics and patterns of factors affecting construction accident costs from both direct and indirect perspectives. Later, this study proposes four distinct machine learning (ML) models, comparing their performances in predicting the total accident cost (including indirect costs) in advance. Additionally, this research sheds light on an important issue in construction data analysis, which is the scarcity of data in a particular class, by applying random oversampling and random undersampling techniques. The suggested framework can assist practitioners and management in estimating construction accident costs and identifying the relevant attributes that impact accidents at the construction site for future practices.

Sensitivity Identification Method for New Words of Social Media based on Naive Bayes Classification (나이브 베이즈 기반 소셜 미디어 상의 신조어 감성 판별 기법)

  • Kim, Jeong In;Park, Sang Jin;Kim, Hyoung Ju;Choi, Jun Ho;Kim, Han Il;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • From PC communication to the development of the internet, a new term has been coined on the social media, and the social media culture has been formed due to the spread of smart phones, and the newly coined word is becoming a culture. With the advent of social networking sites and smart phones serving as a bridge, the number of data has increased in real time. The use of new words can have many advantages, including the use of short sentences to solve the problems of various letter-limited messengers and reduce data. However, new words do not have a dictionary meaning and there are limitations and degradation of algorithms such as data mining. Therefore, in this paper, the opinion of the document is confirmed by collecting data through web crawling and extracting new words contained within the text data and establishing an emotional classification. The progress of the experiment is divided into three categories. First, a word collected by collecting a new word on the social media is subjected to learned of affirmative and negative. Next, to derive and verify emotional values using standard documents, TF-IDF is used to score noun sensibilities to enter the emotional values of the data. As with the new words, the classified emotional values are applied to verify that the emotions are classified in standard language documents. Finally, a combination of the newly coined words and standard emotional values is used to perform a comparative analysis of the technology of the instrument.

An Analysis of the Characteristics of Companies introducing Smart Factory System Using Data Mining Technique (데이터 마이닝 기법을 활용한 스마트팩토리 도입 기업의 특성 분석)

  • Oh, Jeong-yoon;Choi, Sang-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.179-189
    • /
    • 2018
  • Currently, research on smart factories is steadily being carried out in terms of implementation strategies and considerations in construction. Various studies have not been conducted on companies that introduced smart factories. This study conducted a questionnaire survey for SMEs applying the basic stage of smart factory. And the cluster analysis was conducted to examine the characteristics of the company. In addition, we conducted Decision Tree and Naive Bay to examine how the characteristics of a company are derived and compare the results. As a result of the cluster analysis, it was confirmed that the group was divided into the high satisfaction group and the low satisfaction group. The decision tree and the Naive Bay analysis showed that the higher satisfaction group has high productivity.

An Optimization Technique for Smart-Walk Systems Using Big Stream Log Data (Smart-Walk 시스템에서 스트림 빅데이터 분석을 통한 최적화 기법)

  • Cho, Wan-Sup;Yang, Kyung-Eun;Lee, Joong-Yeub
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.3
    • /
    • pp.105-114
    • /
    • 2012
  • Various RFID-based smart-walk systems have been developed for guiding disabled people. The system sends appropriate message whenever the disabled people arrived at a specific point. We propose universal design concept and optimization techniques for the smart-walk systems. Universal design concept can be adopted for supporting various kinds of disabled such as a blind person, a hearing-impaired person, or a foreigner in a system. It can be supported by storing appropriate messages set in the message database table depending on the kinds of the disabled. System optimization can be done by analyzing operational log(stream) data accumulated in the system. Useful information can be extracted by analyzing or mining the accumulated operational log data. We show various analysis results from the operational log data.