• Title/Summary/Keyword: smart mining

Search Result 261, Processing Time 0.03 seconds

Online Social Media Review Mining for Living Items with Probabilistic Approach: A Case Study

  • Li, Shuai;Hao, Fei;Kim, Hee-Cheol
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2013
  • The concept of social media is top of the agenda for many business executives and decision makers, as well as consultants try to identify ways where companies can make profitable use of applications such as Netflix, Flixster. The social media is playing an increasingly important role as the information sources for customers making product choices etc. With the flourish of Web 2.0 technology, customer reviews are becoming more and more useful and important information resources for people to save their time and energy on purchasing products that they want. This paper proposes the Bayesian Probabilistic Classification algorithm to mine the social media review, and evaluates it by different splits and cross validation mechanism from the real data set. The explored study experimental results show the robustness and effectiveness of proposed approach for mining the social media review.

  • PDF

A Knowledge Based Physical Activity Evaluation Model Using Associative Classification Mining Approach (연관 분류 마이닝 기법을 활용한 지식기반 신체활동 평가 모델)

  • Son, Chang-Sik;Choi, Rock-Hyun;Kang, Won-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.215-223
    • /
    • 2018
  • Recently, as interest of wearable devices has increased, commercially available smart wristbands and applications have been used as a tool for personal healthy management. However most previous studies have focused on evaluating the accuracy and reliability of the technical problems of wearable devices, especially step counts, walking distance, and energy consumption measured from the smart wristbands. In this study, we propose a physical activity evaluation model using classification rules, induced from the associative classification mining approach. These rules associated with five physical activities were generated by considering activities and walking times in target heart rate zones such as 'Out-of Zone', 'Fat Burn Zone', 'Cardio Zone', and 'Peak Zone'. In the experiment, we evaluated the prediction power of classification rules and verified its effectiveness by comparing classification accuracies between the proposed model and support vector machine.

Analysis of Research Trends and Issues in Smart Tourism: A Comparative Study between South Korea and China (스마트관광 연구 동향 및 이슈 분석: 한국과 중국 비교연구)

  • Soo Jin Kim;Yang Gi Kim;Sang Jeong Moon
    • Smart Media Journal
    • /
    • v.13 no.9
    • /
    • pp.18-26
    • /
    • 2024
  • The development of information and communication technology and advanced technologies has led to the full-fledged implementation of smart tourism in the tourism industry. Concurrently, both domestic and international research on smart tourism has been actively pursued. This study aimed to compare and analyze the trends and issues in smart tourism research between South Korea and China, to identify differences in issues related to smart tourism in both countries, and to suggest directions for future research in smart tourism. For this purpose, a text mining analysis was conducted on 69 Korean papers and 42 Chinese papers related to smart tourism published from January 2020 to June 2024. The analysis showed that Korean research on smart tourism focused heavily on improving the quality and satisfaction of tourists' experiences and understanding their behavioral intentions, while Chinese research emphasized provision of immersive contents and studies on sustainable tourism. Based on the analysis results, implications for smart tourism research were presented, along with limitations of this study and future research directions.

Estimation of Smart Election System data

  • Park, Hyun-Sook;Hong, You-Sik
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.67-72
    • /
    • 2018
  • On the internal based search, the big data inference, which is failed in the president's election in the United States of America in 2016, is failed, because the prediction method is used on the base of the searching numerical value of a candidate for the presidency. Also the Flu Trend service is opened by the Google in 2008. But the Google was embarrassed for the fame's failure for the killing flu prediction system in 2011 and the prediction of presidential election in 2016. In this paper, using the virtual vote algorithm for virtual election and data mining method, the election prediction algorithm is proposed and unpacked. And also the WEKA DB is unpacked. Especially in this paper, using the K means algorithm and XEDOS tools, the prediction of election results is unpacked efficiently. Also using the analysis of the WEKA DB, the smart election prediction system is proposed in this paper.

Analysis of Smart Factory Research Trends Based on Big Data Analysis (빅데이터 분석을 활용한 스마트팩토리 연구 동향 분석)

  • Lee, Eun-Ji;Cho, Chul-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.551-567
    • /
    • 2021
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on smart factories by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on smart factories. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "SMART FACTORY" and "Smart Factory" as search terms, and the titles and Korean abstracts were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, 739 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; Smart factory research slowed down from 2005 to 2014, but until 2019, research increased rapidly. According to the analysis by fields, smart factories were studied in the order of engineering, social science, and complex science. There were many 'engineering' fields in the early stages of smart factories, and research was expanded to 'social science'. In particular, since 2015, it has been studied in various disciplines such as 'complex studies'. Overall, in keyword analysis, the keywords such as 'technology', 'data', and 'analysis' are most likely to appear, and it was analyzed that there were some differences by fields and years. Conclusion: Government support and expert support for smart factories should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to smart factories. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.

A Case Study on Smart Factory Extensibility for Small and Medium Enterprises (중소기업 스마트 공장 확장성 사례연구)

  • Kim, Sung-Min;Ahn, Jaekyoung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.43-57
    • /
    • 2021
  • Smart factories can be defined as intelligent factories that produce products through IoT-based data. In order to build and operate a smart factory, various new technologies such as CPS, IoT, Big Data, and AI are to be introduced and utilized, while the implementation of a MES system that accurately and quickly collects equipment data and production performance is as important as those new technologies. First of all, it is very essential to build a smart factory appropriate to the current status of the company. In this study, what are the essential prerequisite factors for successfully implementing a smart factory was investigated. A case study has been carried out to illustrate the effect of implementing ERP and MES, and to examine the extensibilities into a smart factory. ERP and MES as an integrated manufacturing information system do not imply a smart factory, however, it has been confirmed that ERP and MES are necessary conditions among many factors for developing into a smart factory. Therefore, the stepwise implementation of intelligent MES through the expansion of MES function was suggested. An intelligent MES that is capable of making various decisions has been investigated as a prototyping system by applying data mining techniques and big data analysis. In the end, in order for small and medium enterprises to implement a low-cost, high-efficiency smart factory, the level and goal of the smart factory must be clearly defined, and the transition to ERP and MES-based intelligent factories could be a potential alternative.

User Review Mining: An Approach for Software Requirements Evolution

  • Lee, Jee Young
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.124-131
    • /
    • 2020
  • As users of internet-based software applications increase, functional and non-functional problems for software applications are quickly exposed to user reviews. These user reviews are an important source of information for software improvement. User review mining has become an important topic of intelligent software engineering. This study proposes a user review mining method for software improvement. User review data collected by crawling on the app review page is analyzed to check user satisfaction. It analyzes the sentiment of positive and negative that users feel with a machine learning method. And it analyzes user requirement issues through topic analysis based on structural topic modeling. The user review mining process proposed in this study conducted a case study with the a non-face-to-face video conferencing app. Software improvement through user review mining contributes to the user lock-in effect and extending the life cycle of the software. The results of this study will contribute to providing insight on improvement not only for developers, but also for service operators and marketing.

A Study on the Service Improvement Strategies by Enterprise through the Analysis of Customer Response Reviews in Smart Home Applications : Based on the Classification of Functional Elements and Design Elements of smart Home Usability Values (스마트 홈 어플리케이션의 고객반응리뷰분석을 통한 기업별 서비스개선전략에 대한 연구 : 스마트 홈 사용성 가치의 기능적요소와 디자인적 요소 분류를 바탕으로)

  • Heo, Ji Yeon;Kim, Min Ji;Cha, Kyung Jin
    • Journal of Information Technology Services
    • /
    • v.19 no.4
    • /
    • pp.85-107
    • /
    • 2020
  • The Internet of Things market, a technology that connects the Internet to various things, is growing day by day. Besides, various smart home services using IoT and AI (Artificial Intelligence) are being launched in homes. Related to this, existing smart home-related studies focus primarily on ICT technology, not on what service improvements should be made in customer positions. In this study, we will use smart home application customer review data to classify functional and design elements of smart home usability value and examine the ways customers think of service improvement. For this, LG Electronics and Samsung Electronics" Smart Home application, the main provider of Smart Home in Korea, customer reviews were crawled to conduct a comparative analysis between them. In this study, the review of IoT home-applications was analyzed to find service improvement insights from customer perspective, and related analysis of text mining, social network analysis and Doc2vec was used to efficiently analyze data equivalent to about 16,000 user reviews. Through this research, we hope that related companies effectively seek ways to improve smart home services that reflect customer needs and are expected to help them establish competitive strategies by identifying weaknesses and strengths among competitors.

A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money) (빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로)

  • Ahn, Soon-Jae;Lee, Sae-Mi;Ryu, Seung-Ei
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.93-99
    • /
    • 2020
  • Text mining is one of the big data analysis methods that extracts meaningful information from atypical large-scale text data. In this study, text mining was used to monitor citizens' opinions on the policies and systems being implemented. We collected 5,108 newspaper articles and 748 online cafe posts related to 'Gyeonggi Lacal Currency' and performed frequency analysis, TF-IDF analysis, association analysis, and word tree visualization analysis. As a result, many articles related to the purpose of introducing local currency, the benefits provided, and the method of use. However, the contents related to the actual use of local currency were written in the online cafe posts. In order to revitalize local currency, the news was involved in the promotion of local currency as an informant. Online cafe posts consisted of the opinions of citizens who are local currency users. SNS and text mining are expected to effectively activate various policies as well as local currency.

Building Energy Time Series Data Mining for Behavior Analytics and Forecasting Energy consumption

  • Balachander, K;Paulraj, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1957-1980
    • /
    • 2021
  • The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.