• 제목/요약/키워드: smart materials

검색결과 1,077건 처리시간 0.022초

Smart Solid State Syntheses of Well-Crystallized Phase Pure Mixed Oxides for Electroceramics

  • Sennat, Mamoru
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.680-687
    • /
    • 2006
  • An overview is given to optimize the solid state processes toward phase pure and well-crystallized fine particulates of mixed oxides, serving as electroceramic materials in various genres. Elevation of the reactivity and preservation of stoichiometry of the starting mixture are of universal importance. Mechanical activation is versatile for these purposes, particularly when an oxygen atom as a hinge promotes formation of hetero-bridging bonds between dissimilar cationic species prior to calcination. Case studies carried out recently in the author's laboratory are displayed and compared for ferroelectric materials, i.e. $PbMg_{1/3}Nb_{2/3}O_3$ $xPbTiO_3$(PMN-PT), $(1-y)Pb(Zn_xMg{1-x})_{1/3}$ $yNb_{2/3}O_3$ (PZN-PMN), $BaBi_2Ta_2O_9$ (BBT), $Ba(Mg_{1/3}Ta_{2/3})O_3$ (BMT), and ferromagnetics, i.e. M-, Y-, and Z-phases of Ba-hexaferrites.

압전재료를 이용한 Bio MEMS 에너지 획득 (Energy Harvesting for Bio MEMS using Piezoelectric Materials)

  • 손정우;최승복
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.199-206
    • /
    • 2005
  • In this work, a theoretical investigation on the energy harvesting is undertaken using one of potential smart materials; piezoelectric material. The energy equations fur both square and circular types of the piezoelectric material are derived, and the energy generated from two commercially available Products: $PZT (Lead/Zirconium/Titanium: Pb(Zr,\;Ti)O_3)$ and PVDF (polyvinylidene fluoride) are investigated in terms of the thickness and area. In addition, a finite element analysis (FEA) is undertaken to obtain the generated energy due to the uniform pressure applied on the surface of the piezoelectric materials. A comparative work between the theory and the FEA is made followed by the brief discussion on the usage of the harvested energy for Bio MEMS.

Application of magnetoelastic stress sensors in large steel cables

  • Wang, Guodun;Wang, Ming L.;Zhao, Yang;Chen, Yong;Sun, Bingnan
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.155-169
    • /
    • 2006
  • In this paper, the application of magnetoelasticity in static tension monitoring for large steel cables is discussed. Magnetoelastic (EM) stress sensors make contact-free tension monitoring possible for hanger cables and post-tensioned cables on suspension and cable-stayed bridges. By quantifying the correlation of magnetic relative permeability with tension and temperature, the EM sensors inspect the load levels in the steel cables. Cable tension monitoring on Qiangjiang (QJ) 4th Bridge demonstrates the reliability of the EM sensors.

Energy and strength in brittle materials

  • Speranzini, Emanuela
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.373-385
    • /
    • 2019
  • A study concerning the strength of brittle materials is presented in this paper. The failure behavior was investigated examining the plane of the crack after the failure and comparing the results obtained with those deriving from the fracture mechanics theory. Although the proposed methods are valid in general for brittle materials, the experiment was performed on glass because the results are more significant for this. Glass elements of various sizes and different edge finishes were subjected to bending tests until collapsing. The bending results were studied in terms of failure load and energy dissipation, and the fracture surfaces were examined by means of microscopic analysis, in which the depth of the flaw and the mirror radius of the fracture were measured and the strength was calculated. These results agreed with those obtained from the fracture mechanics analysis.

Damage propagation for aircraft structural analysis of composite materials

  • Hung, C.C.;Nguyen, T.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권2호
    • /
    • pp.149-167
    • /
    • 2022
  • A Modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in states is considered in this paper. To do this, at the first level, a two-step strategy is proposed to divide a large system into several interconnected subsystems. And we focus on the damage propagation for aircraft structural analysis of composite materials. As a modified fuzzy control command, the next was received as feedback theory based on the energetic function and the LMI optimal stability criteria which allow researchers to solve this problem and have the whole system in asymptotically stability. And we focus on the results which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis of composite materials.

영유아용 웨어러블 디바이스의 개발 동향 조사 (A Study on Trends of Wearable Device Development for Infants)

  • 금보라;권유미;김숙진
    • 한국의상디자인학회지
    • /
    • 제19권4호
    • /
    • pp.29-41
    • /
    • 2017
  • Because infants lack full communication skills and are not active main agents, nurturing and protection are essential. The value of smart devices that can help prevent potential threats and manage infant care is evaluated highly. This study offers basic research data that contributes to the development of devices for infant and parents as well as to future planning. This study compared and analyzed literature materials and visual materials based on news articles, advanced research, and official websites of brands. The research ranges and subjects are wearable devices for infants that were released or will be released between 2014 and 2017. Wearable devices that help protect and manage infant care are roughly separated into clothing, accessory, and the like. In this study, four kinds of clothing products, six kinds of accessories products, and fifteen kinds of other products were researched and a total of 25 kinds of products were analyzed. Categories was made in accordance with morphological characteristics, main features, materials and the design of wearable devices for infants depending on the device features. Wearable devices for infants that will be developed in the future must be based on a variety of suggestions in order to know best how to attach a sensor to an infant. From this study, the deduced trend analysis of wearable devices for infants can suggest new ways for follow-up studies as well as product development.

  • PDF

섬유기반의 웨어러블 디바이스용 유연소재 및 플랫폼 개발동향 분석 -국내외 특허분석을 중심으로- (Analysis on the development trend of flexible materials and platforms for wearable devices based on fiber - Based on domestic & international patent data -)

  • 한현정;장명진;이용성
    • 한국의상디자인학회지
    • /
    • 제22권1호
    • /
    • pp.33-44
    • /
    • 2020
  • The purpose of this study is to guide the research direction for securing the competitiveness of the textile industry by analyzing the trends of patent technology development for flexible materials and platform technologies of domestic and overseas textiles used for wearable devices. The study is based on patents from Korea (KIPO), USA (USPTO), Japan (JPO), Europe (EPO), PCT (WO), and China (SIPO), which were registered as of December 31, 2017. The analysis utilized 3,643 patents acquired from the WINTELIPS search DB. The technology classification system for patent analysis was divided into evangelist-based textile technology developments: human body (AA), fiber attachment patch development (AB), and service platform development (AC). The analysis findings are as follows: 1. The development of flexible materials and platform technologies for textile-based wearable devices has increased since 2000. In particular, China (SIPO) had the most patents. 2. In China, Japan, and Korea, most patent applicants are applied for by natives, but the US has a high proportion of foreigners applying for patents. 3. As for the amount of development of the evangelist-based textile technology (AA) was the most common with 1,203 (33%) cases. As a result of the above IP historical analysis, it can be seen that as a result of the global competition, domestic companies need to acquire IRP and standard technology, and promote commercialization by applying their products to smart wearables devices and other products.

건축공학분야에서 탄산칼슘형성세균의 응용과 전망 (Applications and Prospects of Calcium Carbonate Forming Bacteria in Construction Materials)

  • 박성진;김사열
    • 한국미생물·생명공학회지
    • /
    • 제40권3호
    • /
    • pp.169-179
    • /
    • 2012
  • 미생물에 의한 탄산칼슘침전은 생물 화학적으로 풍화, 침식된 시멘트 건축구조물 표면의 미학적 복원 및 수분침투 방지를 목적으로 응용되었다. 이 기술의 두드러진 장점이 보고된 후 유럽과 미국을 중심으로 미생물을 이용한 건축공학적 응용가능성에 대한 연구가 활발히 이루어져 왔다. 견고하고 원재료와의 호환성이 뛰어난 이 기술은 다양한 탄산칼슘형성세균의 선별 또는 배양 및 적용방법의 개발로 그 관심이 촉발되었다. 본 총설의 목적은 친환경적 건축소재에 대한 관심이 높아지고 그 필요성이 대두되고 있는 현 시점에서 미생물 탄산칼슘형성 매카니즘과 그 관련 기술들을 검토해 보고자 한다. 본론에선 시멘트 건축물 표면코팅 효과에 대한 방법론적 연구사례들을 조사하였고, 시멘트 구조물의 내구성 증진을 위한 미생물의 첨가에 대한 연구사례들도 함께 살펴보았다. 부가적으로 향후 미생물의 다기능성을 이용한 자기수복 스마트 콘크리트 개발에 대한 개념을 살펴보고 그 미래를 전망하였다.

Push-out bond strength and dentinal tubule penetration of different root canal sealers used with coated core materials

  • Sungur, Derya Deniz;Purali, Nuhan;Cosgun, Erdal;Calt, Semra
    • Restorative Dentistry and Endodontics
    • /
    • 제41권2호
    • /
    • pp.114-120
    • /
    • 2016
  • Objectives: The aim of this study was to compare the push-out bond strength and dentinal tubule penetration of root canal sealers used with coated core materials and conventional gutta-percha. Materials and Methods: A total of 72 single-rooted human mandibular incisors were instrumented with NiTi rotary files with irrigation of 2.5% NaOCl. The smear layer was removed with 17% ethylenediaminetetraacetic acid (EDTA). Specimens were assigned into four groups according to the obturation system: Group 1, EndoRez (Ultradent Product Inc.); Group 2, Activ GP (Brasseler); Group 3, SmartSeal (DFRP Ltd. Villa Farm); Group 4, AH 26 (Dentsply de Trey)/gutta-percha (GP). For push-out bond strength measurement, two horizontal slices were obtained from each specimen (n = 20). To compare dentinal tubule penetration, remaining 32 roots assigned to 4 groups as above were obturated with 0.1% Rhodamine B labeled sealers. One horizontal slice was obtained from the middle third of each specimen (n = 8) and scanned under confocal laser scanning electron microscope. Tubule penetration area, depth, and percentage were measured. Kruskall-Wallis test was used for statistical analysis. Results: EndoRez showed significantly lower push-out bond strength than the others (p < 0.05). No significant difference was found amongst the groups in terms of percentage of sealer penetration. SmartSeal showed the least penetration than the others (p < 0.05). Conclusions: The bond strength and sealer penetration of resin-and glass ionomer-based sealers used with coated core was not superior to resin-based sealer used with conventional GP. Dentinal tubule penetration has limited effect on bond strength. The use of conventional GP with sealer seems to be sufficient in terms of push-out bond strength.

신발 분야 국내외 운동역학 연구동향 분석: 2015-2019년에 발간된 연구를 중심으로 (Analysis of Domestic and International Biomechanics Research Trends in Shoes: Focusing on Research Published in 2015-2019)

  • Back, Heeyoung;Yi, Kyungock;Lee, Jusung;Kim, Jieung;Moon, Jeheon
    • 한국운동역학회지
    • /
    • 제30권2호
    • /
    • pp.185-195
    • /
    • 2020
  • Objective: The purpose of this study was to identify recent domestic and international research trends regarding shoes carried out in biomechanics field and to suggest the direction of shoe research later. Method: To achieve this goal of research, the Web of Science, Scopus, PubMed, Korea Education and Research Information Service and Korean Citation Index were searched to identify trends in 64 domestic and international research. Also, classified into the interaction of the human body, usability evaluation of functional shoes, smart shoe development research, and suggested the following are the suggestions for future research directions. Conclusion: A study for the coordination of muscle activity, control of motion and prevention of injury should be sought by developing shoes of eco-friendly materials, and scientific evidence such as physical aspects, materials, floor shapes and friction should be supported. Second, a study on elite athletes in various sports is needed based on functional shoes using new materials to improve their performance along with cooperation in muscle activities and prevention of injury. Third, various information and energy production are possible in real time through human behavioral information, and the application of Human Machine Interface (HMI) technology through shoe-sensor-human interaction should be explored.