• Title/Summary/Keyword: smart materials

Search Result 1,077, Processing Time 0.022 seconds

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

표면특성이 제어된 기능성 나노 입자의 전자 및 의공학적 응용

  • 박영준;이준영;김중현
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.54-55
    • /
    • 2002
  • The fabrication, characterization and manipulation of nanoparticle system brings together physics, chemistry, materials science and biology in an unprecedented way. Phenomena occurring in such systems are fundamental to the workings of electronic devices, but also to living organisms. The ability to fabricate the surface of nanoparticles Is essential in the further development of functional devices that incorporate nanoscale features. Even more essential is the ability to introduce a wide range of chemical and materials flexibility into these structures to build up more complex nanostructures that can ultimately rival biological nanosystems. In this respect, polymers are potentially ideal nanoscale building blocks because of their length scale, well-defined architecture, controlled synthesis, ease of processing and wide range of chemical functionality that can be incorporated. In this presentation, we will look at a number of promising polymer-based nanoparticle fabrication strategies that have been developed recently, with an emphasis on those techniques that incorporate nanostructured polymeric particles into electronic devices or biomedical applications. And functional nanoparticles deliberately designed using several powerful process methods and their application will be discussed. Nanostructured nanoparticles, what we called, implies dispersed colloids with the size ranged from several nanometers to hundreds of nanometer. They have extremely large surface area, thus it is very important to control the morphology or surface functionality fitted for adequate objectives and properties. Their properties should be controlled for various kind of bio-related technologies, such as immunomagnetic cell separation, drug delivery systems, labeling and identification of lymphocyte populations, extracorporeal and hemoperfusion systems, etc. Well-defined polymeric nanoparticles can be considered as smart bomb or MEMS.

  • PDF

Impact Monitoring in Composite Beam Using Stabilization Controlled FBG Sensor System (안정화된 FBG 센서를 이용한 복합적층보에서의 충격위치검출)

  • Bang Hyung-Joon;Park Sang-Oh;Hong Chang-Sun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Impact location monitoring is one of the major concerns of the smart health monitoring. For this application, multipoint ultrasonic sensors are to be employed. In this study, a multiplexed FBG sensor system with wide dynamic range was proposed and stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. For the intensity demodulation system of FBG sensors, Fabry-Perot tunable filter(FP-TF) with 23.8nm FSR(free spectral range) was used, which behaves as two separate filters between $1530 \~ 1560$ nm range. Two FBG sensors were attached on the bottom side of the graphite/epoxy composite beam specimen, and low velocity impact tests were performed to detect the one-dimensional impact locations. Impact locations were calculated by the arrival time differences of the impact longitudinal waves acquired by the two FBGs. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely and found the impact locations with the average error of 1.32mm.

  • PDF

EMS Application Effect of Lower Extremities to Improve Static Balance Capability (정적 균형능력 향상을 위한 하지 의류의 EMS 적용 효과)

  • Hwang, Sunkyu;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.4
    • /
    • pp.151-160
    • /
    • 2021
  • The purpose of this study was to investigate whether there were improvements on balance when both ankle-jointed calf muscles and hip muscles, which affect balance capabilities, were activated through taping techniques and EMS. In this study, the One Leg Standing Test, a static balance test, was conducted by experimenting on a flat floor, foam pad, and a stretching board with a gradient of 20 degrees, respectively, to study static balance capabilities in different situations. Nine healthy men in their 20s were measured five times every five minutes considering muscle fatigue, and the difference between each variable was analyzed through post-test using nonparametric statistical analysis. Our results showed an equal increase in static balance capability was similar when EMS was applied only to calf muscles and only to hip muscles. Notably most improvements were seen when wearing calf supporters and taping technology pants, and applying EMS together. It was also found that the difference between EMS electric stimulation and balance capability was greater when wearing and applying supporters and taping technology pants. Based on the results of the present study, a muscle support band and EMS of taping techniques can improve balance capabilities. These findings are expected to form a basis for solutions Improving the balance capabilities

Effect of Ultrasonic Process of Electroless Ni-P-Al2O3 Composite Coatings

  • Yoon, Jin-Doo;Koo, Bon-Heun;Hwang, Hwan-Il;Seo, Sun-Kyo;Park, Jong-Kyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.315-323
    • /
    • 2021
  • In general, surface treatments of electroless Ni-P coating are extensively applied in the industry due to their excellent properties for considerable wear resistance, hardness, corrosion resistance. This study aims to determine the effect of ultrasonic conditions on the morphology, alumina content, roughness, hardness, and corrosion resistance of electroless Ni-P-Al2O3 composite coatings. The characteristics were analyzed by Energy-dispersive X-ray spectroscopy (EDX), x-ray diffractions (XRD), and atomic force microscopy (AFM), etc. In this study, the effect of ultrasonic condition uniformly distributed alumina within Ni-P solution resulting in a smoother surface, lower surface roughness. Furthermore, the corrosion resistance behavior of the coating was analyzed using tafel polarization curves in a 3.5 wt.% NaCl solution at 25 ℃. Under ultrasonic, Al2O3 content in Ni-P composite solution increased from 0.5 to 5.0 g/L, Al2O3 content at 3.0 g/L was showed a significantly enhanced corrosion resistance. These results suggested that ultrasonic condition was an effective method to improve the properties of the composite coating.

Development of Heterojunction Electric Shock Protector Device by Co-firing (동시소성형 감전소자의 개발)

  • Lee, Jung-soo;Oh, Sung-yeop;Ryu, Jae-su;Yoo, Jun-seo
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • Recently, metal cases are widely used in smart phones for their luxurious color and texture. However, when a metal case is used, electric shock may occur during charging. Chip capacitors of various values are used to prevent the electric shock. However, chip capacitors are vulnerable to electrostatic discharge(ESD) generated by the human body, which often causes insulation breakdown during use. This breakdown can be eliminated with a high-voltage chip varistor over 340V, but when the varistor voltage is high, the capacitance is limited to about 2pF. If a chip capacitor with a high dielectric constant and a chip varistor with a high voltage can be combined, it is possible to obtain a new device capable of coping with electric shock and ESD with various capacitive values. Usually, varistors and capacitors differ in composition, which causes different shrinkage during co-firing, and therefore camber, internal crack, delamination and separation may occur after sintering. In addition, varistor characteristics may not be realized due to the diffusion of unwanted elements into the varistor during firing. Various elements are added to control shrinkage. In addition, a buffer layer is inserted in the middle of the varistor-capacitor junction to prevent diffusion during firing, thereby developing a co-fired product with desirable characteristics.

A Study on the Development of a Calf Supporter for Improving Balance Capacity (균형능력 향상을 위한 종아리 서포터 개발에 관한 연구)

  • Hwang, Sunkyu;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.1
    • /
    • pp.39-50
    • /
    • 2021
  • The purpose of this study was to investigate how wearing calf support and applying of electronic muscle simulation(EMS) affected the ability to balance. In this study, the one leg standing test for static balance and the Y balance test for dynamic balance were used to assess balance. At this time, the pressure of the calf support was different to produce two supporters, and a difference between wearing the support before, after, and after applying EMS was evaluated. Seven men in their 20s with healthy bodies were measured five times each with a five-minute break, taking into account muscle fatigue, and the difference between each variable was analyzed through a follow-up test using nonparametric statistical analysis. Studies have shown more difference from supporter B with a more appropriate pressure (mmgh) for increasing balance capability than from supporter A. In addition, it was confirmed that the use of EMS electrostimulation and support before measuring the balance capability resulted in a greater difference. The proper pressure (mmgh) supporters and EMS can increase the ability to balance, and these results can be expected to improve the balance ability of ordinary people in their daily lives.

Suggestion the Rational Items with Comparison and Review for Designing of Buffering Retention Facility (완충저류시설 설계 시 고려사항 분석을 통한 합리적 항목 제시)

  • Ahn, Sang Hyun;Jung, Younghun;Kwak, Jaesang;Um, Myoung-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • Korea Government promotes the installation of buffering retention facility to protect the water environment and prevent the environmental contamination event by toxic materials. Although the buffering retention facility is very important to protect the natural environment through the retention of accidental pollution and initial runoff, much study has not been done to suggest the guide line for the design of the facility. In this study, we suggested the rational items for the design of buffering retention facility based on many experts after we investigated and compared the previous results of many design materials.

Recent Progress of Smart Sensor Technology Relying on Artificial Intelligence (인공지능 기반의 스마트 센서 기술 개발 동향)

  • Shin, Hyun Sik;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • With the rapid development of artificial intelligence technology that gives existing sensors functions similar to human intelligence is drawing attention. Previously, researches were mainly focused on an improvement of fundamental performance indicators as sensors. However, recently, attempts to combine artificial intelligence such as classification and prediction with sensors have been explored. Based on this, intelligent sensor research has been actively reported in almost all kinds of sensing fields such as disease detection, motion detection, and gas sensor. In this paper, we introduce the basic concepts, types, and driving mechanisms of artificial intelligence and review some examples of its use.

A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)

  • Belkhodja, Y.;Ouinas, D.;Fekirini, H.;Olay, J.A. Vina;Achour, B.;Touahmia, M.;Boukendakdji, M.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.395-420
    • /
    • 2022
  • A new hybrid quasi-3D and 2D high-order shear deformation theory is studied in this mathematical formulation, for an investigation of the bending, free vibrations and buckling influences on a functionally graded material plate. The theoretical formulation has been begun by a displacement field of five unknowns, governing the transverse displacement across the thickness of the plate by bending, shearing and stretching. The transverse shear deformation effect has been taken into consideration, satisfying the stress-free boundary conditions, especially on plate free surfaces as parabolic variation through its thickness. Thus, the mechanical properties of the functionally graded plate vary across the plate thickness, following three distributions forms: the power law, exponential form and the Mori-Tanaka scheme. The mechanical properties are used to develop the equations of motion, obtained from the Hamilton principle, and solved by applying the Navier-type solution for simply supported boundary conditions. The results obtained are compared with other solutions of 2D, 3D and quasi-3D plate theories have been found in the literature.