• Title/Summary/Keyword: smart manufacturing

Search Result 717, Processing Time 0.029 seconds

A Study on the Virtual Data Generator for Simulation in Smart Factory (스마트팩토리에서 시뮬레이션을 하기 위한 가상 데이터 생성기 연구)

  • Moon, Yong-Hyun;Hwang, Seung-Yeon;Shin, Dong-Jin;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.131-139
    • /
    • 2021
  • It can be said that smart factory is the most prominent area in the fourth industrial revolution. Developing processes or algorithms required for smart factory requires data values from smart factory, but there are many real challenges in obtaining such data. Therefore, this study developed a data generator that can more realistically simulate data from different processes in smart factory to help research on smart factory. In addition, functions such as setting presets and intuitive UI configurations were developed for the convenience of data creators. This data generator will help you simulate smart factory environments by providing more realistic data easily and simply when you create the different systems needed for smart factory environments.

A Study on Organizational Competence and Organizational Performance for Smart Factory Implementation of Korean Small and Medium Enterprises (국내 중소기업의 스마트공장 구축을 위한 조직역량과 조직성과에 관한 연구)

  • Seo, Pan Jong;Kim, Dong Hui;Moon, Tae Soo
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.197-218
    • /
    • 2022
  • Purpose This study examines the roles of firm-level smart factory implementation in the relationship between organizational competence and organizational performance in the context of Korean small and medium Enterprises (SMEs). To achieve this goal, this study presents and empirically tests a research model with evaluation data conducted by industrial experts on how organizational competence can be exploited to positively influence organizational performance through smart factory implementation. Design/methodology/approach Organizational competence are based on the research construct developed by Odważny et al.(2018). Research constructs on smart factory are based on the measurement model developed by Korea Technology and Information Promotion Agency for Korea small and medium Enterprises (TIPA) (2020) and organizational performance are based on the performance construct developed by Kwon(2019). To complete the investigation, we collected 31 firm data conducted by industrial experts in Korea from Dec 2018 to Dec 2020. Most of firm was implemented officially by government budget granted for smart factory of Korea SMEs. To test our hypotheses, partial least squares (PLS) method was employed. Findings The findings indicate that organizational competence is antecedent to influence smart factory implementation, while smart factory implementation has significant relationship with organizational performance. This study provides a better understanding of the connection between organizational competence and organizational performance through smart factory implementation. So companies should focus on enhancing organizational competence and implementing smart factory to obtain sustainable competitiveness.

The Integrated Design and Analysis of Manufacturing Lines (I) - an Automated Modeling & Simulation System for Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(I) - 디지털 가상생산 기술 적용을 위한 모델링 & 시뮬레이션 자동화 시스템)

  • Choi, SangSu;Hyeon, Jeongho;Jang, Yong;Lee, Bumgee;Park, Yangho;Kang, HyoungSeok;Jun, Chanmo;Jung, Jinwoo;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-147
    • /
    • 2014
  • In manufacturing companies, different types of production have been developed based on diverse production strategies and differentiated technologies. The production systems have become smart, factories are filled with unmanned manufacturing lines, and sustainable manufacturing technologies are under development. Nowadays, the digital manufacturing technology is being adopted and used in manufacturing industries. When this technology is applied, a lot of efforts, time and cost are required and training professionals in-house is limited. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development on virtual environment. This system provides the functions that can be designed easily using library and template based on standardized modules and analyzed automatically the logistic and capacity simulation by one-click and verified the result using visual reports. Also, we can review the factory layout using automatically created 3D virtual factory and increase the knowledge reuse by e-FEED system.

Genetic Programming based Manufacutring Big Data Analytics (유전 프로그래밍을 활용한 제조 빅데이터 분석 방법 연구)

  • Oh, Sanghoun;Ahn, Chang Wook
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.31-40
    • /
    • 2020
  • Currently, black-box-based machine learning algorithms are used to analyze big data in manufacturing. This algorithm has the advantage of having high analytical consistency, but has the disadvantage that it is difficult to interpret the analysis results. However, in the manufacturing industry, it is important to verify the basis of the results and the validity of deriving the analysis algorithms through analysis based on the manufacturing process principle. To overcome the limitation of explanatory power as a result of this machine learning algorithm, we propose a manufacturing big data analysis method using genetic programming. This algorithm is one of well-known evolutionary algorithms, which repeats evolutionary operators such as selection, crossover, mutation that mimic biological evolution to find the optimal solution. Then, the solution is expressed as a relationship between variables using mathematical symbols, and the solution with the highest explanatory power is finally selected. Through this, input and output variable relations are derived to formulate the results, so it is possible to interpret the intuitive manufacturing mechanism, and it is also possible to derive manufacturing principles that cannot be interpreted based on the relationship between variables represented by formulas. The proposed technique showed equal or superior performance as a result of comparing and analyzing performance with a typical machine learning algorithm. In the future, the possibility of using various manufacturing fields was verified through the technique.

Development of Smart Tape Attachment Robot in the Cold Rolled Coil with 3D Non-Contact Recognition (3D 비접촉 인식을 이용한 냉연코일 테이프부착 로봇 개발)

  • Shin, Chan-Bai;Kim, Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1122-1129
    • /
    • 2009
  • Recently taping robot with smart recognition function have been studied in the coil manufacturing field. Due to the difficulty of 3D surface processing from the complicated working environment, it is not easy to accomplish smart tape attachment motion with non-contact sensor. To solve these problems the applicable surface recognition algorithm and a flexible sensing device has been recommended. In this research, the fusion method between 1D displacement and 3D laser scanner is applied for robust tape attachment about cold rolled coil. With these sensors we develop a two-step exploration and the smart algorithm for the awareness of non-aligned coil's information. In the proposed robot system for tape attachment, the problem is reduced to coil's radius searching with laser displacement sensor at first, and then position and orientation detection with 3D laser scanner. To get the movement at the robot's base frame, the hand-eye compensation between robot's end effector and sensing device should be also carried out respectively. In this paper, we examine the auto-coordinate transformation method in the calibration step for the real environment usage. From the experimental results, it was shown that the taping motion of robot had a robust under the non-aligned cold rolled coil.

Implementation of Multiple Connectivity using CANopen in IEEE 1451.0-based Smart Sensor (IEEE 1451.0 기반 스마트 센서에서 CANopen을 이용한 다중 접속 기능의 구현)

  • Park, Jee-Hun;Lee, Suk;Song, Young-Hun;Lee, Kyung-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.436-445
    • /
    • 2011
  • As automation systems become intelligent and autonomous for productibility, industrial networks (fieldbuses) and network-based devices are essential components of intelligent manufacturing systems. However, there are obstacles for the wide acceptance of the network-based devices such as smart sensor and network-based actuator. First, there exist numerous fieldbus protocols that a network-based device should be able to support. Second, the whole network-based device has to be replaced when only the sensor of the module fails. In order to overcome these obstacles, a smart sensor/actuator is implemented as two units; one responsible for network communication and the other for sensor/actuator operations using IEEE 1451.0 standard. This paper presents a structure of the 1451.0-based smart sensor with multiple connectivity function designed by CANopen.

Electrical Properties of Ag-coated Conductive Yarns Depending on Physical and Chemical Conditions (물리화학적 조건에 따른 은코팅 전도사의 전기적 특성)

  • Ryu, Jong-Woo;Jee, Young-Joo;Kim, Hong-Jae;Kwon, Seo-Yoon;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.23 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • Electrically conductive yarn coated with silver particles are widely used to make smart wear but recent studies on smart fabrics are focused on measuring method of electrical characteristics and improving technologies of its electric properties. Also durability of conductive yarn with environmental change was also important work to make smart fabric. We compared resistance changes of silver coated conductive yarns under various physical and chemical conditions such as repeated strain, heat exposure and pH for basic informations on smart wear manufacturing process. And we deduct that repeated strain among the physical conditions was most effective factors on yarn resistance change and the low resistance change was observed with increasing the number of filaments in identical yarn fineness.

Analyzing Factors Influencing the Introduction of Smart Factory : Focusing on Type of Manager and Firm age (스마트 팩토리 도입에 영향을 미치는 요인 분석 : 경영인 유형과 업력을 중심으로)

  • Lee, Dasol;Boo, Jeman;Jung, Hunsik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.110-119
    • /
    • 2020
  • In order to provide priorities of the factors affecting the introduction of Smart Factory, This study reconstructed the factors and calculated the priorities through AHP (Analytic Hierarchy Process). The first layer of the hierarchy have 4 factors; productivity increase, brand image improve, marketing improve, cost reduction. The second layer of the hierarchy have 3 factors belong to the first layer, so the total number of second layer is 12. We divided the characteristics of enterprises into type of manager and age. The C.R. (consistency ratio) values of the respondents were found to be less than 0.1 and were judged to be a 'reasonable test'. As a result, the weights of the higher layer and the lower layer were obtained respectively, and then the weights of the higher layer and the weights of the lower layer were multiplied to obtain the total weights. Unlike previous studies that only surveyed factors that companies consider when introducing smart factory, (1) weighing and prioritizing factors were achieved. There are differences in priorities, (2) smart factory can be studied with the type of manager and firm age. When establishing policies, it is a practical implication (3) to assess its strategy not only for government officials but also for executives.

Study on the Prevention of Patent Disputes through Network Analysis - Focusing on NPEs in Smart Car Industry - (스마트카 특허분쟁 네트워크분석을 통한 특허분쟁예방에 관한 연구)

  • Ryu, ChangHan;Suh, Minsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.315-325
    • /
    • 2015
  • Smart Car market has been experiencing continuous growth to drive leading companies in automotive and IT industries to focus on advancing related technologies. As the IT technologies fuse into automotive technologies, the patent litigation has been showing changes. One of the prominent changes in patent litigation pattern of Smart Car field is the increased activities of the Non-Practicing Entities (NPEs), whose main field has been the IT area. However, the automotive companies have been mainly focusing on preventing patent disputes against competitors through trend analysis, which caused them to become relatively vulnerable to the attacks from NPEs. In this study, we developed a methodology for monitoring and analyzing the activities of NPEs using network analysis tools to suggest effective strategies for manufacturing companies to fortify their ability to respond against unanticipated attacks. Our methodology, which is developed for the Smart Car field, can also be useful for other fields such as IT and electronics.

Smart Factory's Environment Monitoring System using Bluetooth (블루투스를 이용한 스마트팩토리의 환경 모니터링 시스템)

  • Lee, Hwa-Yeong;Lee, Sung-Jin;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.224-226
    • /
    • 2021
  • Recently, in order to increase the efficiency of the product production process, the automation of facilities and devices in the factory is in progress, and a smart factory is being built using ICT and IoT technologies. In order to organically solve many problems occurring in the smart factory, a system for monitoring the wireless communication function between facilities and devices and the manufacturing process environment of the smart factory is required. In this paper, we propose a monitoring system using a Bluetooth module, a temperature/humidity sensor and a fine dust sensor to remotely monitor the process environment of a smart factory. The proposed monitoring system collect Arduino sensor values wirelessly through Bluetooth communication.

  • PDF