• Title/Summary/Keyword: smart healthcare

Search Result 485, Processing Time 0.021 seconds

Smart-Coord: Enhancing Healthcare IoT-based Security by Blockchain Coordinate Systems

  • Talal Saad Albalawi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.32-42
    • /
    • 2024
  • The Internet of Things (IoT) is set to transform patient care by enhancing data collection, analysis, and management through medical sensors and wearable devices. However, the convergence of IoT device vulnerabilities and the sensitivity of healthcare data raises significant data integrity and privacy concerns. In response, this research introduces the Smart-Coord system, a practical and affordable solution for securing healthcare IoT. Smart-Coord leverages blockchain technology and coordinate-based access management to fortify healthcare IoT. It employs IPFS for immutable data storage and intelligent Solidity Ethereum contracts for data integrity and confidentiality, creating a hierarchical, AES-CBC-secured data transmission protocol from IoT devices to blockchain repositories. Our technique uses a unique coordinate system to embed confidentiality and integrity regulations into a single access control model, dictating data access and transfer based on subject-object pairings in a coordinate plane. This dual enforcement technique governs and secures the flow of healthcare IoT information. With its implementation on the Matic network, the Smart-Coord system's computational efficiency and cost-effectiveness are unparalleled. Smart-Coord boasts significantly lower transaction costs and data operation processing times than other blockchain networks, making it a practical and affordable solution. Smart-Coord holds the promise of enhancing IoT-based healthcare system security by managing sensitive health data in a scalable, efficient, and secure manner. The Smart-Coord framework heralds a new era in healthcare IoT adoption, expertly managing data integrity, confidentiality, and accessibility to ensure a secure, reliable digital environment for patient data management.

An Improvement of Personalized Computer Aided Diagnosis Probability for Smart Healthcare Service System (스마트 헬스케어 서비스를 위한 통계학적 개인 맞춤형 질병예측 기법의 개선)

  • Min, Byung-won
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.79-84
    • /
    • 2016
  • A novel diagnosis scheme PCADP(personalized computer aided diagnosis probability) is proposed to overcome the problems mentioned above. PCADP scheme is a personalized diagnosis method based on ontology and it makes the bio-data analysis just a 'process' in the Smart healthcare service system. In addition, we offer a semantics modeling of the smart healthcare ontology framework in order to describe smart healthcare data and service specifications as meaningful representations based on this PCADP. The PCADP scheme is a kind of statistical diagnosis method which has real-time processing, characteristics of flexible structure, easy monitoring of decision process, and continuous improvement.

A Study on Home Healthcare Convergence for IEEE 11073 Standard (IEEE 11073 표준을 위한 홈 헬스케어 융합에 대한 연구)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.422-427
    • /
    • 2015
  • Medical paradigm shift has been based on disease treatment into wellness care so that changes need more IT-based smart medical services. In addition, individual based smart devices are more focused on healthcare services and can provide access to personal medical information, health conditions and social welfare managed by users. In this paper, IEEE11073 PHD (Personal Health Devices) and HL7 (Health Level 7) standards of legacy healthcare devices are developed for communicating with each individual based smart device and providing healthcare service in smart TV environment through a unified home healthcare gateway.

Influencing factors on purchase intention for smart healthcare clothing by gender and age - Focused on TAM, clothing attributes, health-lifestyle, and fashion innovativeness - (스마트 헬스케어 의류 구매의도에 대한 성별과 연령대별 영향 요인 - 기술수용모델(TAM), 의복속성, 건강라이프스타일, 패션혁신성을 중심으로 -)

  • Han, Heejung
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.6
    • /
    • pp.615-631
    • /
    • 2019
  • Smart healthcare clothing combines IoT, new technology, and clothing construction to perform specific care functions, and its utility has been expanding rapidly within aging and diversified societies. However, the related market remains at an early stage of development due to limited regulation, lack of consumer awareness, and the need for not only technical development but promotion plans for potential users. This paper aims to analyze factors influencing purchase intention for smart healthcare clothing with biosignal monitoring, including variables in the Technology Acceptance Model (TAM), clothing attributes, health-related lifestyle factors, and fashion innovativeness. A survey was conducted on a sample of 300 males and 300 females ranging in age from 20 to 50 years, and data were analyzed using SPSS 21.0. The results show that perceived usefulness, perceived aesthetic attributes, health responsibility, and fashion innovativeness were overall significant predictors of using smart healthcare clothing. Additionally, perceived ease of use and physical activity in the male subsample, and perceived compatibility within the female group, also had significant effects. Furthermore, age was a determining factor; for subjects in the 30s age group, perceived usefulness, compatibility, and health responsibility had significant positive associations. The results of this study can provide basic guidelines for designing merchandising plans to expand user acceptance of smart healthcare clothing.

The Different Analysis of the Preference and Benefits Sought of Smart Clothing based on Demographic Characteristics (인구통계학적 특성에 따른 스마트 의류에 대한 선호도 및 추구혜택 차이 분석)

  • Park, Younghee
    • Journal of Fashion Business
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • This study aimed to analyze the preference, the factors of benefits sought, and the difference of benefits sought for smart clothing based on demographic characteristics. This survey study used questionnaire. The subjects of the survey consisted of men and women with ages ranging from twenty to fifty years old, who were living in Gyeongnam region. For the collected data analysis, Factor analysis, t-test, ANOVA, and Duncan multiple range tests were used by SPSS 23. The results obtained were as follows. The different analysis results for smart clothing based on demographic characteristics showed a significant difference with respect to marital status, age, monthly income, and occupation, but showed an insignificant difference with respect to gender. The factors of benefits sought for smart clothing were extracted from five factors-pursuit; image innovation and improvement, pursuit of healthcare, pursuit of body protection, pursuit of amusement and pleasure, and pursuit of hi-tech function. The different analysis results of smart clothing according to demographic characteristics showed a significant difference for pursuit of healthcare only with respect to gender, for pursuit of image innovation and improvement, healthcare, amusement and pleasure, and hi-tech function with respect to marital status, for pursuit of image innovation and improvement, healthcare, amusement and pleasure, and hi-tech function with respect to age, for pursuit of healthcare and body protection with respect to monthly income, and for all five factors with respect to occupation.

Design of U-healthcare System based on Smart-Cloth (스마트 의류 기반의 유-헬스케어 시스템의 설계)

  • Cho, Byung-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.237-242
    • /
    • 2016
  • To build effective u-healthcare system based-on smart-cloth, design of hardware and software modules for suitable smart-cloth is needed. And a gateway smart-phone program for sensing signal's collecting and processing is needed to send sensing bio-signal from smart-cloth to sever. To do this, it is an important to design and describe modules well for having no difficult problems when implementing later. Also, if medical team do not monitor bio-signals sending from smart-phone frequently and these signals' change values which diagnose automatically due to building expert system based on rules/facts is informed for users, it will be an useful u-healthcare system. Therefore in this paper, by presenting design method of u-healthcare system hardware and software modules based on smart-cloth which prepared these functions, this design method is showed for applying a common use u-healthcare system's production usefully.

A Study on the Future Bathroom Coupled with Smart Healthcare System (스마트 헬스케어 시스템이 결합된 미래 욕실 제품에 대한 연구)

  • Lee, Ga-Young;Lee, Dong-Min
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.203-209
    • /
    • 2018
  • Recent advances in healthcare-adapted devices, the increase in chronic diseases and the increasing social needs due to aging, trigger the development of smart healthcare systems and present a new medical paradigm. As a result, moves are being made to accommodate the changing healthcare concept of modern residential areas. In particular, the bathrooms in residential areas are becoming diverse as medical spaces with various types of bathroom culture. Therefore, by actively utilizing the digital medical procedure 3, the smart health care system was applied, I thought about future bathroom products (like smart shower and smart scales) and searched for the technology necessary for each person's needs. By planning a product suitable for a changing bathroom, it will be useful for the development of smart healthcare technology through future national and policy improvements in preparation for the age of the fourth industrial revolution.

Smart Healthcare: Enabling AI, Blockchain, VR/AR and Digital Solutions for Future Hospitals (스마트 헬스케어: 미래 병원을 위한 AI, 블록체인, VR/AR 및 디지털 솔루션 구현)

  • Begum, Khadija;Rashid, Md Mamunur;Armand, Tagne Poupi Theodore;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.406-409
    • /
    • 2022
  • In recent years, the developments in technologies, such as AI systems, Blockchain, VR/AR, 3D printing, robotics, and nanotechnology, are reshaping the future of healthcare right before our eyes. And also, healthcare has seen a paradigm shift towards prevention-oriented medicine, with a focus on consumers requirements. The spread of infectious diseases such as Covid-19 have altered the definition of healthcare and treatment facilities, necessitating immediate action to redesign hospitals' physical environments, adapt communication models to address social distancing requirements, implement virtual health solutions, and establish new clinical protocols. Hospitals, which have traditionally served as the hub of healthcare systems, are pursuing or being forced to reestablish themselves against this landscape. Rather than only treating ailments, future healthcare is predicted to focus on wellness and prevention. In personalized care, long-term prevention strategies, remote monitoring, early diagnosis, and detection are critical. Given the growing interest in smart healthcare defined by these modern technologies, this study looked into the definitions and service kinds of smart healthcare. The background and technical aspects of smart hospitals were also explored through a literature review.

  • PDF

Trend of IoT-based Healthcare Service (사물인터넷 기반 헬스케어 서비스 기술 동향)

  • Heo, Sung-Phil;Noh, Dong-Hee;Moon, Chang Bae;Kim, Dong-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.221-231
    • /
    • 2015
  • This paper provides the trend of Internet of Things (IoT) for smart healthcare services and applications. IoT has provided a promising opportunity to build intelligent healthcare system and smart wearable applications by using the growing capability of wireless mobile devices, interactive sensors/actuators, and RFID technologies. For analysis of state-of-art technology of smart healthcare system, this paper includes comparative analysis and investigation of existing standard, network protocol, and devices, etc. In this paper, we examine the market trend of IoT healthcare. In particular, we examine the variety of IoT based healthcare type such as mobile, wearable device. After that, we examine the technologies of IoT healthcare such as standard, sensor, network and security. This survey contributes to better understanding of the challenges in existing IoT healthcare and further new light on future research directions.

Detecting Bladder Biomarkers for Closed-Loop Neuromodulation: A Technological Review

  • Park, Eunkyoung;Lee, Jae-Woong;Kang, Minhee;Cho, Kyeongwon;Cho, Baek Hwan;Lee, Kyu-Sung
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.228-236
    • /
    • 2018
  • Neuromodulation was introduced for patients with poor outcomes from the existing traditional treatment approaches. It is well-established as an alternative, novel treatment option for voiding dysfunction. The current system of neuromodulation uses an open-loop system that only delivers continuous stimulation without considering the patient's state changes. Though the conventional open-loop system has shown positive clinical results, it can cause problems such as decreased efficacy over time due to neural habituation, higher risk of tissue damage, and lower battery life. Therefore, there is a need for a closed-loop system to overcome the disadvantages of existing systems. The closed-loop neuromodulation includes a system to monitor and stimulate micturition reflex pathways from the lower urinary tract, as well as the central nervous system. In this paper, we reviewed the current technological status to measure biomarker for closed-loop neuromodulation systems for voiding dysfunction.