• 제목/요약/키워드: smart fiber

검색결과 330건 처리시간 0.029초

형상기억합금을 이용한 지능형 고분자 복합재료의 설계 (Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy)

  • 정태헌
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

대변위 측정을 위한 다중화된 광섬유 센서 (A multiplexed fiber-optic sensor for measuring large displacement)

  • 유정애;권일범;조재흥;서대철
    • 센서학회지
    • /
    • 제14권3호
    • /
    • pp.169-179
    • /
    • 2005
  • A multiplexed bend loss type single-mode fiber-optic sensor system was prepared to measure the displacement of several cm of the civil engineering structures such as many bridges, tunnels and various buildings. This bend loss type fiber-optic sensor used the signal difference between two reflection signals due to various bend losses generating at a pair of optical connectors by using OTDR (optical time domain reflectometer) for measuring displacements. And the experiments were conducted for showing the measurement feasibility on the range of 10 cm, and the multiplexing experiments were also performed to measure the displacements of 5 measuring positions of an object by setting these 5 fiber-optic sensors on a single mode fiber simultaneously.

Temperature Compensation of a Strain Sensing Signal from a Fiber Optic Brillouin Optical Time Domain Analysis Sensor

  • Kwon, Il-Bum;Kim, Chi-Yeop;Cho, Seok-Beom;Lee, Jung-Ju
    • Journal of the Optical Society of Korea
    • /
    • 제7권2호
    • /
    • pp.106-112
    • /
    • 2003
  • In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures be measured. So, we present the temperature compensation of a signal from a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor. A fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of a fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive to the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located nearby the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber while compensating for the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from the fiber optic BOTDA sensor had good coincidence with those values of the conventional electrical strain gages.

삽입되어진 광섬유 센서를 이용한 일방향 적층 복합재료의 열적 거동 연구 (Study on Thermal Behavior of Unidirectional Composite Materials using Embedded Optical Fiber Sensors)

  • 김승택;전흥재;최흥섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.251-257
    • /
    • 1999
  • Smart structure that contains sensors, which are either embedded in a composite material or attached to a structure, is currently receiving considerable attention. Fiber Bragg grating sensor, one of the optical fiber sensors, has been widely used to sense strain and temperature for smart structures since both parameters change the resonant frequency of the grating. In this paper, according to the various heating and cooling conditions the thermal behavior of unidirectional composite material was monitored by embedding the fiber Bragg grating sensors in the longitudinal and transverse directions of unidirectional composites. The thermal behavior of unidirectional composite material was monitored for various heating and cooling rates and applied pressure. It was found that the thermal behavior was unaffected by pressure variations and heating and cooling rates applied to the composites. The thermal strains were measured by considering the shift in Bragg wavelength that was generated by the thermal expansion of composite specimen. The longitudinal and transverse C.T.E.'s were also obtained from the corresponding temperature-thermal strain curves.

  • PDF

유연 광섬유 기술을 적용한 의류 제품용 로고 디자인 방향의 제시 (A Suggestion of Guideline for designing of logo type for Apparel products based on the technology of flexible plastic optical fiber)

  • 김남희;양진희;홍순교;홍석일;이주현
    • 감성과학
    • /
    • 제15권4호
    • /
    • pp.469-476
    • /
    • 2012
  • 본 연구의 목적은 유연 광섬유의 스마트 의류용 로고 디자인을 개발하기 위한 디자인 지침을 도출하는 것이다. 로고 디자인을 위한 지침 도출의 기준은, 첫째 광섬유 전면에 걸쳐 적절한 밝기 정도를 나타내는지의 여부, 둘째 광섬유 전면에 걸쳐 비교적 균일한 밝기 특성을 나타내는가 등이었다. 이를 위하여, 실험 1에서는 광섬유사의 각도 변화와 길이에 따른 유연 광섬유의 밝기 특성을 분석하였으며, 실험 2에서는 실제 의류용 로고 디자인을 위한 지침을 도출하기 위해, 알파벳 대문자의 주요 형태소 등의 유연 광섬유 밝기 특성을 분석하였다. 두 개의 실험 결과를 토대로 하여, 유연 광섬유로 구성된 의류용 로고 디자인을 위한 지침과 제한점을 도출하였다.

  • PDF

태양광 집광장치의 광 특성분석 및 유묘기 상추의 생장에 미치는 영향 (Analysis of Light Traits in a Solar Light-collector Device and its Effects on Lettuce Growth at an Early Growth Stage)

  • 이상규;이재수;원진호
    • 한국환경과학회지
    • /
    • 제28권11호
    • /
    • pp.1019-1025
    • /
    • 2019
  • The aim of this study was to analyze the light traits in a solar light-collector device and its effects on lettuce growth at an early growth stage. The three hyper parameters used were the reflector diameter (2 cm and 4 cm), coating inside the reflector (chrome-coated, non-coated) and distance from the light fiber (15 cm and 20 cm). The results showed that light efficiency, which is the ratio of light intensity inside the fiber to the solar intensity, improved by 41.1 % when using a 2 cm diameter chrome-coated reflector at a distance of 15 cm from the light fiber; whereas it only improved by 20.6% when a non-coated reflector was used. As the reflector size was increased to 4 cm, the light efficiency for the coated and non-coated reflectors increased by 28.5 % and 26.4 %, respectively, hence, no significant difference was observed. When the light fiber was placed at a distance of 20 cm, the increase in light efficiency with coating treatment was 8 % higher than without coating treatment. We also compared the efficiency of light-fiber treatment with that of LED treatment in our lettuce nursery, and observed that the plants exhibited better growth with light-fiber treatment. We observed an average increase of 1.7 cm in leaf height, $7cm^2/plant$ increase in leaf area, and 32 mm increase in root length upon light-fiber treatment as opposed to those observed with LED treatment. These findings indicate that the collector light-fiber is economically feasible and it improves lettuce growth compared with the LED treatment.

광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측 (Monitoring of Beam-column Joint Using Optical Fiber Sensors)

  • 김기수
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.3-11
    • /
    • 2005
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplexibility in one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability and dominate the strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측 (Monitoring of Beam-Column Joint Using Optical Fiber Sensors)

  • 김기수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.595-601
    • /
    • 2003
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability und dominate tile strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

  • PDF

Quantifying Optical Link Loss of Fiber-to-the-Home Infrastructure

  • Karan Bahadur Bhandari;Bhanu Shrestha;Surendra Shrestha
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.48-58
    • /
    • 2024
  • Fiber to the Home (FTTH) technology is among the most advanced broadband services, delivering voice, data, and television through a single optical fiber directly to customer premises, ensuring high-speed and reliable connectivity. The study conducted on Nepal Telecom's FTTH networks involved direct measurements from the optical line terminal to the fiber access point and optical network unit, providing detailed insights into network performance. Using the OptiSystem software, the analysis revealed a link loss of 24.99 dB, a Q-factor of 12.98, and a minimum Bit Error Rate (BER) of 7.31E-39, all within standard limits, which underscores the robustness of the network. The study also identified that the highest contributors to signal loss were connector loss, fiber attenuation, and fusion splices, emphasizing the importance of minimizing these factors to maintain optimal network performance. Overall, these findings highlight the critical aspects of FTTH network design and maintenance, ensuring that service providers can deliver high-quality broadband services to customers.

광섬유센서를 이용한 철도구조물의 모니터링 (Fiber Optic Smart Monitoring of Railway Structures)

  • 김기수;조성규;김명세;김학연;서기원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.754-760
    • /
    • 2008
  • For monitoring of railway structures, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of railway structures. We expect that the fiber optic sensors have much less noises than electrical strain gauges because of electro-magnetic immunity while railways operate electric power of 22000 volts. Fiber optic sensors showed good durability and long term stability for continuous monitoring of the railway structures as well as good response to the structural behaviors during construction.

  • PDF