• Title/Summary/Keyword: smart farming facility

Search Result 8, Processing Time 0.023 seconds

A Survey on the Facility Use Rate and the Perception of Facility Use of Smart Farming Farmers in Jeonnam Province (농가의 스마트팜 설비 이용률 및 스마트팜 이용인식에 대한 조사연구 - 전남 스마트팜 농가를 대상으로 -)

  • Lee, Choon-Soo;Jo, Yun-Hee;Song, Kyung-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.31 no.3
    • /
    • pp.229-247
    • /
    • 2023
  • This study investigates the facility use status of smart farming farmers to improve facility use rate of farmers. To this end, a survey was conducted on smart farming farmers in Jeonnam province, and the main survey contents are as follows: facility use rate, the reasons for low facility use, the perception of the introduction and use of smart farming etc. As a result of the survey, many farmers have introduced smart farming facilities even though they do not have enough use capacity. Thus it is necessary to improve the use capacity of farmers. Second, the average facility use rate of farmers was 65.1%, and 37.5% of respondents did not use even 50% of smart farming facilities. To improve the use rate, education on how to use facilities and continuous consulting support for farmers are needed. And the largest number of farmers perceived the risk like crop damage or facility failure due to poor use of facilities. This means that risk management due to the smart farming facilities is important. Third, farmers answered that rapid and continuous repair service were the most important when using facilities. Thus it is important to foster rear industries such as maintenance companies to stably operate smart farming facilities.

Comparison of Social, Economic, and Environmental Impacts depending on Cultivation Methods - Based on Agricultural Income Survey Data and Smart Farm Survey Reports - (농산물 재배 방식에 따른 사회, 경제, 환경 영향 비교 - 농산물 소득조사 자료와 스마트팜 실태조사 보고서를 기반으로 -)

  • Lee, Jimin;Kim, Taegon
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.127-135
    • /
    • 2023
  • This study examined the impact of changes in agricultural production methods on society, the economy, and the environment. While traditional open-field farming relied heavily on natural conditions, modern approaches, including greenhouse and smart farming, have emerged to mitigate the effects of climate and seasonal variations. Facility horticulture has been on the rise since the 1990s, and recently, there has been a growing interest in smart farms due to reasons such as climate change adaptation and food security. We compared open-field spinach and greenhouse spinach using agricultural income survey data, and we also compared greenhouse tomato cultivation with smart farming tomato cultivation, utilizing data from the smart farm survey reports. The economic results showed that greenhouse spinach increased yield by 25.8% but experienced a 29% decrease in income due to equipment depreciation. In the case of tomato production in smart farms, both yield and income increased by 36-39% and 34-46%, respectively. In terms of environmental impact, we also compared fertilizer and energy usage. It was found that greenhouse spinach used 29% less fertilizer but 14% more energy compared to open-field spinach. Smart farming for tomatoes saw a negligible decrease in electricity and fuel costs. Regarding the social impact, greenhouse spinach reduced labor hours by 31%, and the introduction of smart farming for tomatoes led to an average 11% reduction in labor hours. This reduction is expected to have a positive effect on sustainable farming. In conclusion, the transition from open-field to greenhouse cultivation and from greenhouse cultivation to smart farming appears to yield positive effects on the economy, environment, and society. Particularly, the reduction in labor hours is beneficial and could potentially contribute to an increase in rural populations.

Design of Initial Decision-Making Support Interface for Crop Facility Cultivation (작물 시설재배 초기 의사결정 지원 인터페이스 설계)

  • Kim, Kuk-Jong;Cho, Yong-Yoon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.71-78
    • /
    • 2022
  • Recently, the number of people wishing to return to farming is increasing, However, the lack of farming experience and management information of returnees is one of the main reasons for increasing the probability of agricultural failure. This study proposes an interface to support early facility cultivation management decision-making for returnees who want facility cultivation. The proposed interface is designed with UML(Unified Modeling Language) and provides key decision-making information such as land/crop suitability, land/facility costs, and management costs according to input data such as cultivation areas, selected crops, and cultivation types selected by the user. Through the proposed interface, facility cultivators can effectively and quickly acquire initial decision-making information for facility cultivation in the desired target area.

A Study in the Review and Progressive Strategies of Smart Village in Rural Areas (농어촌지역 스마트빌리지 사업의 고찰과 추진방향)

  • Nam, Yun-Cheol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.25 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • There are various issues in rural areas. There are population decline, aging, and the absence of jobs and amenities. The government continues to expand various projects for rural areas. Recently, the government is promoting smart village projects in farming and fishing villages. The purpose of smart village is safety, convenience, smartization, and productivity improvement. The purpose of this study is to investigate the project and implementation process of smart villages, and domestic and foreign cases. And it classifies smart villages and suggests implementation strategies. The conclusion is as follows. ①The smart village business focuses on safety, living convenience, facility smartization, and agriculture and fisheries. ②In overseas cases, the smart village project focuses on improving the residential environment of farming and fishing villages in the EU, the UK, and Germany. Japan focuses on improving energy and agricultural and fisheries productivity. ③It is recommended that the smart village business be subdivided and promoted as much as possible. And the project enhances synergy in cooperation with other government ministries. ④Smart services increase credibility through FGI for public officials and residents. ⑤The project is carried out in consideration of agricultural products, tourism festivals, natural environment, history and tradition.

An Empirical Study for Development of Onshore Gim (Pyropia yezoensis) Aquaculture System (육상 김 양식 시스템 개발을 위한 실증화 연구)

  • Oh, Ho-Dong;Oh, Seung-Seob;Shin, Hwa-Soo;Shin, Heung-Sop
    • The Journal of Fisheries Business Administration
    • /
    • v.51 no.2
    • /
    • pp.15-24
    • /
    • 2020
  • As a first step in obtaining the minimum level of data needed to develop smart cultivation technology for Korean seaweed gim (Pyropia yezoensis), farming tests have been carried out using onshore aquaculture facilities. The aquaculture facility was built on paddy farmland on the west coast of Chungnam and received seawater from nearby sea. In this paper, we report the overall process and results of the aquaculture trials attempted in Korea's first onshore gim aquaculture facilities. In addition, the industrial possibility of gim production using the onshore aquaculture system will be discussed through the analysis of all expenses incurred in the test form.

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.

Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products (농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화)

  • Gi Hoon Hong;Sunghyun Uhm;Hyungjune Jung;Sungwon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this study, we constructed a process simulation model for an agricultural by-products based Solid Oxide Fuel Cell (SOFC) combined heat and power generation system as part of the introduction of technology for energy self-sufficiency in the agricultural sector. The aim was to reduce the burden of increasing fuel and electricity consumption due to rapid fluctuations in international oil prices and the expansion of smart farming in domestic farms, while contributing to the national greenhouse gas reduction goals. Based on the experimental results of 0.3 ton/day torrefied agricultural by-product gasification experiment, a model for an agricultural by-product-based SOFC cogeneration system was constructed, and optimization of the heat exchange network was conducted for SOFC capacities ranging from 4 to 20 kW. The results indicated that an 8 kW agricultural by-product-based SOFC cogeneration system was optimal under the current system conditions. It is anticipated that these research findings can serve as foundational data for future commercial facility design.

A Study on the Implementation of Digital Twin Architecture and Detailed Technology for Agriculture and Livestock Industry (농·축산 산업을 위한 디지털 트윈 아키텍처 및 세부 기술 구현에 관한 연구)

  • Jeong, Deuk-Young;Kim, Se-Han;Lee, In-Bok;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Kim, Jun-Gyu;Park, Se-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.398-408
    • /
    • 2021
  • Since COVID-19, the world's food shortage population has more than doubled from 130 million to 270 million. In addition, as various issues related to the food industry such as climate change arise, the importance of agriculture and livestock is increasing. In particular, it is still difficult to utilize data generated in these field. Therefore, the objective of this study was to explain the limitations of using data based on fragmentary analysis and the necessity of Digital Twin. The additional objective was to propose an architecture and necessary technologies of a Digital Twin platform suitable for agricultural and livestock. It also proposed a Digital Twin-based service that could be used in the near future, such as labor reduction, productivity improvement, personalized consumption, transportation, and distribution by incorporating intelligent information convergence technology into facility horticulture and livestock farming.