• Title/Summary/Keyword: smart energy

Search Result 1,825, Processing Time 0.022 seconds

Customer Willingness to Use Smart Grid Services in Home (스마트 그리드 서비스에 대한 고객 수용도 분석)

  • Kim, Young-Myoung;Lee, Young-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1399-1406
    • /
    • 2010
  • Customers can monitor electricity use in real time in smart grid(ICT is grafted onto current grid), so various beneficial services can be provided to customer. We did a qualitative survey, HV(Home Visit) and FGD(Focus Group Discussion), in order to derive customer's cognition of using electricity in home and values that customers consider significantly and a quantitative survey in order to know willingness to use. Customers consider electricity indispensible for using home appliances, want to use safely far from electromagnetic waves, short circuit and electronic shock. Also, customers want to save energy conveniently with no stress. Customers want 'a function', 'information', 'motivation' for energy saving, and 'electromagnetic waves cutting', 'to prevent electronic shock', 'to prevent short circuit' for safe electricity use. In this study, we derived 4 services - energy monitoring, standby power cutting, remote control, energy consulting - based on customer values and unmet needs, which is connected to home network that customers can monitor total and each appliance's electricity usage in real time and control home appliances. The willingness to use of services is over 60% and especially energy monitoring and standby power cutting service have high willingness to use rate, about 80%.

Impact of Energy Density and Bead Overlap Ratio of a SUS316L Specimen Fabricated using Selective Laser Melting on Mechanical Characteristics (선택적 레이저 용융 공정으로 제작된 시편의 SUS316L 에너지밀도 및 비드 중첩률에 따른 기계적 특성 변화 분석)

  • Lee, Dong Wook;Kim, Woo Sung;Sung, Ji Hyun;Kim, Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.42-51
    • /
    • 2021
  • Investigations of process parameters are essential when fabricating high-quality parts using additive manufacturing. This study investigates the change in the mechanical characteristics of a SUS316L specimen fabricated using selective laser melting based on the energy density and bead overlap ratio. The SUS316L powder particles were spherical and 35 ㎛ in size. Single-bead and hexahedral shape deposition experiments were performed sequentially. A single bead experiment was performed to obtain the bead overlap ratios for different laser parameters utilizing laser power and scan speed as experimental parameters. A hexahedral shape deposition experiment was also performed to observe the difference in mechanical properties, such as the internal porosity, surface roughness, and hardness, based on the energy density and bead overlap ratio of the three-dimensional printed part. Laser power, scan speed, overlap ratio, and layer thickness were chosen as parameters for the hexahedral shape deposition experiment. Accordingly, the energy density applied for three-dimensional printing, and the experimental parameters were calculated, and the energy density and bead overlap ratio for fabricating parts with good properties have been suggested.

An Operations Model for Home Energy Management System Considering an Energy Storage System and Consumer Utility in a Smart Grid

  • Juhyeon Kang;Yongma Moon
    • Asia pacific journal of information systems
    • /
    • v.27 no.2
    • /
    • pp.99-125
    • /
    • 2017
  • In this study, we propose an operations model to automate a home energy management system (HEMS) that utilizes an energy storage system (ESS) in consideration of consumer utility. Most previous studies focused on the system for the profits obtained from trading charged energy using large-scale ESS. By contrast, the present study focuses on constructing a home-level energy management system that considers consumer's utility over energy consumption. Depending on personal preference, some residential consumers may prefer consuming additional energy to earn increased profits through price arbitrage and vice versa. However, the current system could not yet reflect on this aspect. Thus, we develop an operations model for HEMS that could automatically control energy consumption while considering the level of consumer's preference and the economic benefits of using an ESS. The results of simulations using a dataset of the Korean market show that an operations policy of charging and discharging can be changed depending on consumer's utility. The impact of this policy is not ignorable. Moreover, the technical specifications of ESS, such as self-discharge rate and round-trip efficiency, can affect the operations policy and automation of HEMS.

Design and Construction of Urban-type Energy Self-Supporting Smart-Farm Service Model (도심형 에너지 자립 스마트팜 서비스 모델 설계 및 구축)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1305-1310
    • /
    • 2019
  • Modern agriculture is changing from resource-oriented agriculture to technology-oriented agriculture. Agriculture, which combines science and technology, is recognized as a new growth engine, and governments, local governments, research institutes, and industry are working together to develop and disseminate various devices necessary for smart farms to build intelligent smart farms. Recently, research is being conducted to build a more intelligent agricultural environment by building a cloud platform. In this paper, we propose a plan to build an urban energy - independent smart farm that can utilize leisure time and agricultural activities by utilizing the rooftop of a city. Also, by using IT technology, various data of smart farm can be managed on remote server, and HMI module for controlling internal environment of smart farm can be developed to manage smart farm automatically or semi-automatically. The service model suggests a model that can manage the internal environment of the smart farm based on mobile.

Grid-tied Power Converter for Battery Energy Storage Composed of 2-stage DC-DC Converter

  • Kim, Do-Hyun;Lee, Yoon-Seok;Han, Byung-Moon;Kim, Ju-Yong;Chae, Woo-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1400-1408
    • /
    • 2013
  • This paper proposes a new grid-tied power converter for battery energy storage, which is composed of a 2-stage DC-DC converter and a PWM inverter. The 2-stage DC-DC converter is composed of an LLC resonant converter connected in cascade with a 2-quadrant hybrid-switching chopper. The LLC resonant converter operates in constant duty ratio, while the 2-quadrant hybrid-switching chopper operates in variable duty ratio for voltage regulation. The operation of proposed system was verified through computer simulations. Based on computer simulations, a hardware prototype was built and tested to confirm the technical feasibility of proposed system. The proposed system could have relatively higher efficiency and smaller size than the existing system.

A Development of Intelligent Metering and Control System for Energy Management of Electric Cabinet Panel (분전반 전력관리용 지능형 계측 제어 시스템 개발)

  • Park, Byung-Chul;Park, Jae-Sung;Song, Sung-Kun;Shin, Joong-Rin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.90-97
    • /
    • 2013
  • In recent years, the many electric saving methods are studied because of difficulty of meeting the demand. The electric energy management such as monitoring of branch power consumption, demand control, metering, power quality monitoring, electric safety monitoring can make energy saving. The purpose of this paper is to develop a system which can provide the integrated management of various functions required for energy management by consumers. In this system all functions which were embodied into each devices are integrated into intelligent meter. The developed systems are tested and implemented by installing at consumer electric distribution panel.

Development of Current Control System for Solar LED Street Light System

  • Kim, Byun-Gon;Kim, Kwan-Woong;Jang, Tae-Su;Lee, Jun-Myung;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.52-56
    • /
    • 2012
  • As inexhaustible clean energy, solar energy will be the most ideal green energy in the 21st century. The effective method to convert solar energy into electrical energy is by solar photovoltaic power generation technologies. LED Emitting Diode is a kind of component which can transform electricity into visible light. As the smart current control system for photovoltaic street lights, the proposed system has improved the battery charging and discharging mechanism to extend the lifespan and effectively controls the LED discharge current according to battery charge state and lighting.

Challenges in Green Innovation Policy after the Fukushima Nuclear Accident

  • Wada, Tomoaki
    • STI Policy Review
    • /
    • v.4 no.1
    • /
    • pp.135-161
    • /
    • 2013
  • This paper examines Japan's Science and Technology (S&T) Basic Plans in accordance with its S&T Basic Law. The Basic Plans promote two major innovation (Green Innovation and Life Innovation) towards the creation of new markets and jobs, specifically under the Fourth S&T Basic Plan enacted on August 2011. Successful smart community demonstration projects at four urban localities were launched under plans to promote Green Innovation research and development of renewable energy technologies. However, the expectation that renewable energy such as solar or wind power can replace nuclear power is not backed by sufficient evidence. Furthermore, the electricity produced by these sources is expensive and unstable owing to its reliance on weather conditions. The Fukushima nuclear power plant accident on March 2011 has also seriously affected Japan's future energy plans. According to a government estimate, electricity charges would double if nuclear power generation were abandoned, imposing a heavy burden on the Japanese economy. Japan is in need of energy policies designed on the basis of more far-sighted initiatives.

A Study on System Structure and GUI Implement for Secure ESS use (안전한 ESS 사용을 위한 System 구조와 GUI 구현에 관한 연구)

  • Kim, Wantae;Kim, Hyunsik;Park, Byungjoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.11-17
    • /
    • 2019
  • As interest in the efficiency use of energy has been recently rising, studies have been performed in utilizing various types of eco-friendly green energy and natural energy. Especially there has been rapidly increase in the fields using ESS (Energy Storage System), which is the technology for storing the energy from nature. The application fields of ESS is continuously growing and expanding to various types of technologies. However, in recent years there have been continuing problems with the safety of ESS. And related researches are going on. In this paper, we has proposed a system structure to utilize more secure ESS and has monitored the system status of ESS in real time by using smart phone app. This paper has also proposed a new method to configure secure ESS by implementing GUI (Graphical User Interface) to control the system. And then explain experimental results to investigate the efficiency of the proposed ESS.

Energy-efficient Real-time Computing by Utilizing Heterogenous Wireless Interfaces of the Smart Mobile Device in Small-IoT Environments (Small-IoT 환경에서 이기종 네트워크를 활용한 스마트 모바일 단말의 에너지 효율적 실시간 컴퓨팅 기법)

  • Lim, Sung-Hwa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.108-112
    • /
    • 2021
  • For smart mobile devices, the wireless communication module is one of the hardware modules that consume the most energy. If we can build a multi-channel multi-interface environment using heterogeneous communication modules and operate them dynamically, data transmission performance can be highly improved by increasing the parallelism. Also, because these heterogeneous modules have different data rates, transmission ranges, and power consumption, we can save energy by exploiting a power efficient and low speed wireless interface module to transmit/receive sporadic small data. In this paper, we propose a power efficient data transmission method using heterogeneous communication networks. We also compared the performance of our proposed scheme to a conventional scheme, and proved that our proposed scheme can save energy while guaranteeing reasonable data delivery time.