• 제목/요약/키워드: smart design and construction

검색결과 302건 처리시간 0.027초

BIM 기반/스마트 BOM의 형상관리에 의한 전 생명주기를 고려한 철도건설사업관리 시스템 및 방법에 관한 고찰 (BIM-based Smart BOM by the Configuration Management of the Life-cycleconsidering the Railway Construction Project Management System and Method)

  • 정수영;이종성;박수중;이근영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2280-2285
    • /
    • 2011
  • As the prefecture railroad construction accelerates, unmanned system's reliability and safety is increasing in demand. Accordingly, effective management of construction projects for the PM and SE techniques are being applied, with the introduction and use of PMIS computerized systems. Due to the construction of railways, from the start of PMIS research planning, design, procurement, to construction and commissioning, various expertise is being carefully gathered, and by integrating it into the unified budget ideas and processes, rational, efficient, organized, and manageable financial plans are developed for the computerized system. However, the current PMIS does not take into account the life-cycle. This study is to bring attention to the BIM smart BOM-based configuration management for life-cycle through the consideration for railway construction project management.

  • PDF

A Methodology of Open BIM-based Quantity take-off for Schematic Estimation of the Frame Work in Early Design Stage

  • Hansaem Kim;Jungsik Choi;Inhan Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.419-425
    • /
    • 2013
  • Recently AEC industry has required construction automation according to becoming large and complex. Thus BIM-based construction project is increased and used in whole fields of AEC industry. Quantity take-off and estimation fields are important factor for decision-making in conceptual and schematic design stages of construction projects. The purpose of this study improves reliability of the estimation through QTO based on Open BIM. Scope and method to apply QTO is to select conceptual design stage through LoD(Level of Detail) in AEC field and to extract information from BIM model through analysis of IFC structure. This study proceeds three step to make BIM model and check the model quality and calculate QTO. The methodology of QTO using IFC is to verify of result in this study and expects utilizing in design stage of construction projects. The result from this study is expected to decrease the risk factor and time of estimation in the project early phase through improving reliability of schematic estimation.

  • PDF

Seismic assessment of base-isolated nuclear power plants

  • Farmanbordar, Babak;Adnan, Azlan Bin;Tahir, Mahmood Md.;Faridmehr, Iman
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.211-223
    • /
    • 2017
  • This research presented a numerical and experimental study on the seismic performance of first-generation base-isolated and fixed-base nuclear power plants (NPP). Three types of the base isolation system were applied to rehabilitate the first-generation nuclear power plants: frictional pendulum (FP), high-damping rubber (HDR) and lead-rubber (LR) base isolation. Also, an Excel program was proposed for the design of the abovementioned base isolators in accordance with UBC 97 and the Japan Society of Base Isolation Regulation. The seismic assessment was performed using the pushover and nonlinear time history analysis methods in accordance with the FEMA 356 regulation. To validate the adequacy of the proposed design procedure, two small-scale NPPs were constructed at Universiti Teknologi Malaysia's structural laboratory and subjected to a pushover test for two different base conditions, fixed and HDR-isolated base. The results showed that base-isolated structures achieved adequate seismic performance compared with the fixed-base one, and all three isolators led to a significant reduction in the containment's tension, overturning moment and base shear.

A formal representation of data exchange for slope stability analysis of smart road design and construction

  • Dai, Ke;Huang, Wuhao;Wen, Ya;Xie, Yuru;Kim, Jung In
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1130-1137
    • /
    • 2022
  • The Industry Foundation Classes (IFC) provides standardized product models for the building construction domain. However, the current IFC schema has limited representation for infrastructure. Several studies have examined the data schema for road and highway modeling, but not in a sufficiently comprehensive and robust manner to facilitate the overall integrated project delivery of road projects. Several discussions have focused on slope engineering for road projects, but no solution has been provided regarding the formalized parametric modeling up to now. Iterative design, analysis, and modification are observed during the process of slope design for road projects. The practitioners need to carry out the stability analysis to consider different road design alternatives, including horizontal, vertical, and cross-section designs. The procedure is neither formalized nor automated. Thus, there is a need to develop the formal representation of the product and process of slope analysis for road design. The objective of this research is to develop a formal representation (i.e., an IFC extension data schema) for slope analysis. It consists of comprehensive information required for slope analysis in a structured manner. The deliverable of this study contributes to both the formal representation of infrastructure development and, further, the automated process of slope design for road projects.

  • PDF

시공단계에서의 BIM 활용성 증대를 위한 품질관리 방안 (Quality Management for Utilizing BIM in Construction Phase)

  • 권오철;조주원;조찬원
    • 한국CDE학회논문집
    • /
    • 제18권5호
    • /
    • pp.338-347
    • /
    • 2013
  • Since it is common that design BIM data created by designers and engineers do not afford to consider constructability for the site, it is usually necessary to optimize the design BIM data to construction BIM data. While this optimization process requires various design updates depending on the construction methods and requirements, most designers in the projects do not participate the construction phase, which can arise another obstacle factor in utilizing construction BIM. In order to prevent this issue, we need cooperation system, where all the parties work together from the initial stage of project to create quality assured BIM model. However this kind of system is not realistic in Korea with most of the working processes being conventional yet. Therefore, at this point of time, it is realistic for us to secure basic construction qualities in the design phase and keep those qualities by the construction phase. This study suggested a relevant quality management plan for BIM usage in construction phase.

BIM 기반 설계 자동화 도구와 디지털 트윈의 상호운용성 - 차세대 방음터널의 사례를 중심으로 - (BIM-based Design Automation Tool and Digital Twin Interoperability - Case of the Next Generation Noise Barrier Tunnel -)

  • 양승원;김성준;김성아
    • 한국BIM학회 논문집
    • /
    • 제11권4호
    • /
    • pp.31-41
    • /
    • 2021
  • Digital twins between "BIM Digital Model-Physical Prototype Model" will be built for Noise Barrier tunnel(NBT) that meet the definition of N.G smart city facilities derived from previous studies to build a data flow that connects data at each stage of design, construction, and operation. In this process, BIM design automation tools are created and utilized, and consistent transmission of member and attribute data is performed by converting them into IFC format. Through this, the purpose is to improve the labor-intensive environment required from the design stage of the NBT and to consistently maintain the information required for subsequent production and construction. This includes achieving changes in the construction industry based on digital transformation by unifying various data formats used differently for each industry from design to operation. In addition, it demonstrates that information exchange in the maintenance and management stages is possible based on the data exchange of the established digital twin and aims to improve the existing labor-intensive environment and expand operability between digital and physical information. As suggested in previous studies, the implementation of digital twins in these N.G smart city facilities includes the possibility of building an environment that adds to the possibility of high value-added product platforms as well as the function of big data platforms targeting existing smart cities.

Research and Development of RFIC Technology in Smart Temperature Information Material

  • Chang, Chih-Yuan;Hung, San-Shan;Chang, Yu-Chueh;Peng, Yu-Fang
    • Journal of Construction Engineering and Project Management
    • /
    • 제1권1호
    • /
    • pp.18-23
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

RESEARCH AND DEVELOPMENT OF RFIC TECHNOLOGY IN SMART TEMPERATURE INFORMATION MATERIAL

  • Chih-Yuan Chang;San-Shan Hung;Yu-Chueh Chang;Yu-Fang Peng
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.480-486
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

  • PDF

복식분야 디지털 관련 연구 논문의 내용 분석 (Analysis on the Contents of Digital-related Studies in the Field of Costume)

  • 음정선;김연희;유영선
    • 복식
    • /
    • 제66권6호
    • /
    • pp.135-148
    • /
    • 2016
  • This study aimed to understand whether or not academic outcomes in digital studies shown in detailed field of costume were generated appropriately according to the development of digital technology by analyzing contents of studies in the digital-related studies, which were conducted with a background of the digital age. First, as a result of frequency of digital-related theses by the age of 'Internet Age(1994-2000)', 'Digital Age(2000-2009)', and 'Smart Life Age(After 2010)', which were classified according to the digital environmental changes, the number of theses increased drastically based on the transition point of each age. Second, representative keywords that appeared in each age included 'digital' and 'Internet' in the Internet Age, and 'digital', 'smart', 'Internet', '3D', and 'wearable' were shown in the 'Digital Age' and 'Smart Life Age'. Third, results of analysis according to the field of costume show that relevant studies were conducted in three fields of marketing/information, clothing construction and fashion design in the Internet Age, whereas the Digital Age produced relevant studies in all fields, and Smart Life Age was characterized by increase in studies in the field of fashion design and clothing construction. Fourth, results of analysis according to the contents of study show that relevant studies in the Internet Age were shown only in two subjects of 'preliminary study and trend of study' and 'studies using technical programs', and 'preliminary study and trend of study' decreased, but relevant studies in other fields of subject increased in the Smart Life Age. As shown above, relevant studies appeared as various subjects in many different detailed fields of costume in costume studies according to the stream of the Smart Life Age, which is growing fast recently, and is considered an inspiring result for development of studies in the field of costume according to the environment of the age.

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.