• 제목/요약/키워드: smart composite materials

검색결과 166건 처리시간 0.02초

신호의 투과/반사법을 이용한 복합재료 샌드위치 구조 속으로의 안테나 삽입 (Antenna Integration with Composite Sandwich Structure using Transmission/Reflection Methods of Incident Wave)

  • 유치상;황운봉
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.55-58
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effects of composites facesheet on antenna performances are investigated in the first stage and changes in the gain of microstrip antenna due to composites facesheet have been determined. ‘Open condition’ is defined when gain is maximized and is a significant new concept for the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with the outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved and the bandwidth is also as wide as specified in our requirements. With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

스마트 구조물용 광섬유 격자센서 및 그 응용 (Study on the Fiber Bragg Grating Sensors for Smart Structures and Their Applications)

  • 김기수;송영철;방기성
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.115-118
    • /
    • 2004
  • In this paper, a Fiber Bragg Grating (FBG) sensor system for smart structures is described. FBGs are well-suited for long term and extremely severe experiments, where traditional strain gauges fail. In the system, a reflect wave-length measurement method which employs a tunable light source to find out the center wave-length of FBG sensor is used. We applied the FBG system to composite repairing structures and beam column joint of building structure. We also applied the system to nuclear energy power plant for structural integrity test to measure the displacement of the structure under designed pressure and to check the elasticity of the structure by measuring the residual strain. The system works very well and it is expected that it can be used for a real-time strain, temperature and vibration detectors as parts of smart structures.

  • PDF

MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어 (Active Vibration Control of Smart Hull Structure in Underwater Using Micro-Fiber Composite Actuators)

  • 권오철;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.466-471
    • /
    • 2008
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezoceramic actuator named as Macro-Fiber Composite (MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear-Quadratic-Gaussian (LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

  • PDF

복합재료 적층판에 삽입된 광섬유 센서의 기계적 특성에 관한 연구 (A study on the mechanical behavior of the optical fiber sensors embedded in the composite laminate)

  • 신금철;이정주;권일범
    • 센서학회지
    • /
    • 제8권6호
    • /
    • pp.440-447
    • /
    • 1999
  • 지능형 복합재료 구조물(Smart Composite Structures) 사용 시 부하되는 인장하중과 복합재료의 경화 시 발생하는 열하중은 복합재료 내에 삽입된 광섬유 센서의 기계적 거동에 직접적인 영향을 미친다. 게다가 복합재료의 적층 순서 및 코팅층의 유무에 따라 광섬유 센서 내의 웅력 분포는 달라지게 된다. 또한, 복합재료 적층판 내에서 발생된 균열은 적층판 전체의 파괴뿐만 아니라 광섬유 센서의 파괴에 큰 영향을 미치게 된다. 그러므로, 본 연구에서는 인장하중 및 열하중이 가해지는 복합재료 적층판 내에 삽입된 광섬유 센서의 응력분포를 유한요소해석을 통해 알아보고, 복합재료 적층판의 적층 순서에 따른 영향과 광섬유 센서에 코팅을 하였을 경우 광섬유 센서 내의 응력분포에 미치는 영향을 알아보았다. 또, 인장실험을 통하여 적층판 내에서 발생한 균열이 광섬유 센서의 파괴에 미치는 영향을 알아보았다.

  • PDF

MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어 (Active Vibration Control of Underwater Hull Structure Using Macro-Fiber Composite Actuators)

  • 권오철;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.138-145
    • /
    • 2009
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezocomposite actuator named as Macro-Fiber Composite(MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear Quadratic Gaussian(LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

고차 지그재그 이론을 이용한 열_전기_기계 하중하의 스마트 복합재 쉘 구조물의 해석 (HIGHER ORDER ZIG-ZAG SHELL THEORY FOR SMART COMPOSITE STRUCTURES UNDER THERMO-ELECTRIC-MECHANICAL LOADING)

  • 오진호;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.1-4
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine accurately predict deformation and stress of smart shell structures under the mechanical, thermal, and electric loading. The displacement fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. The mechanical, thermal, and electric loading is applied in the sinusoidal distribution function in the in-surface direction. Thermal and electric loading is given in the linear variation through the thickness. Especially, in electric loading case, voltage is only applied in piezo-layer. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. In order to obtain accurate transverse shear and normal stresses, integration of equilibrium equation approach is used. The numerical examples of present theory demonstrate the accuracy and efficiency of the proposed theory. The present theory is suitable for the predictions of behaviors of thick smart composite shell under mechanical, thermal, and electric loadings combined.

  • PDF

복합재료를 이용한 통신용 지능구조물 설계 및 제작 (Design and Fabrication of Composite Smart Structures for Communication)

  • 유치상;황운봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.346-349
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effect of composites facesheet on antenna performances is studied in the first stage. Changes in the gain of microstrip antenna due to composites facesheet have been determined. 'Open condition' is defined when gain is maximized and is a significant new concept in the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with any thickness of outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved (over 11 dBi) and the bandwidth is also as wide as specified in our requirements (over 10% at 12.2 GHz). With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

광섬유센서를 이용한 복합재 패치수리된 알루미늄판의 균열관찰 (FATIGUE CRACK GROWTH MONITORING OF CRACKED ALUMINUM PLATE REPAIRED WITH COMPOSITE PATCH USING EMBEDDED OPTICAL FIBER SENSORS)

  • 서대철;이정주;김상훈
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.250-253
    • /
    • 2001
  • Recently, based on the smart structure concept, optical fiber sensors have been increasingly applied to monitor the various engineering and civil structural components. Repairs based on adhesively bonded fiber reinforce composite patches are more structurally efficient and much less damaging to the parent structure than standard repairs based on mechanically fastened metallic patches. As a result of the high reinforcing efficiency of bonded patches fatigue cracks can be successfully repaired. However, when such repairs are applied to primary structures, it is needed to demonstrate that its loss can be immediately detected. This approach is based on the "smart patch" concept in which the patch system monitors its own health. The objective of this study is to evaluate the potentiality of application of transmission-type extrinsic Fabry-Perot optical fiber sensor (TEFPI) to the monitoring of crack growth behavior of composite patch repaired structures. The sensing system of TEFPI and the data reduction principle for the detection of crack detection are presented. Finally, experimental results from the tests of center-cracked-tension aluminum specimens repaired with bonded composite patch is presented and discussed.

  • PDF

3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구 (Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material)

  • 김민재;김동현;이춘만
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.

열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론 (HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES)

  • 오진호;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF