• Title/Summary/Keyword: smart antenna

Search Result 227, Processing Time 0.028 seconds

A Design and Implementation of Dual-band Monopole Antenna with two arc-shaped line for WLAN applicaiton (WLAN 적용을 위한 두 원호 모양을 갖는 이중 대역 모노폴 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1049-1056
    • /
    • 2017
  • In this paper, a microstrip-fed dual-band monopole antenna with two arc-shaped lines for WLAN(: Wireless Local Area Networks) applications was designed, fabricated and measured. The proposed antenna is based on a microstrip-fed structure, and composed of two arc-shaped lines and then designed in order to get dual band characteristics. We used the simulator, Ansoft's High Frequency Structure Simulator(: HFSS) and carried out simulation about parameters L2, L5, and with/without slit to get the optimized parameters. The proposed antenna is made of $13.0{\times}34.0{\times}1.0 mm^3$ and is fabricated on the permittivity 4.4 FR-4 substrate($12.0{\times}34.0{\times}1.0mm^3$). The experiment results are shown that the proposed antenna obtained the -10 dB impedance bandwidth 360 MHz (2.29~2.65 GHz) and 1,245 MHz (4.705~5.95 GHz) covering the WLAN bands. Also, the measured gain and radiation patterns characteristics of the proposed antenna are presented at required dual-band(2.4 GHz band/5.0 GHz band), respectively.

Design and Fabrication of Triple-Band Antenna with Three Branch Lines for WLAN Applications (세 개의 분기선로를 갖는 WLAN에 적용가능한 삼중대역 안테나 설계 및 제작)

  • Ha, Sung-Jea;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.119-126
    • /
    • 2019
  • In this paper, a monopole antenna applicable to WLAN standardization is designed, fabricated, and tested. The proposed antenna is designed to have three microstrip lines based on microstrip feeding method and inserted one stub to enhance impedance characteristics. Then, it obtained triple band characteristics of the proposed antenna. We adjusted and optimized the lengths and width of the three microstrip lines and one inserted stub to obtain the required impedance bandwidth for this paper. The proposed antenna has $23.0mm(W){\times}53.1mm(L1)$ on a dielectric substrate of $24.0mm(W1){\times}60.0mm(L){\times}1.0mm$ size. From the fabrication and measurement results, bandwidths of 158 MHz (841 to 1000 MHz) for 900 MHz band, 630 MHz (2.32 to 2.95 GHz) for 2400 MHz band, and 1,040 MHz (4.95 to 5.99 GHz) for 5000 MHz band were obtained based on the impedance bandwidth. The fabricated antenna also obtained the measured gain and radiation pattern characteristics in the required triple band of the proposed antenna.

3-D Beam Steering Antenna for Intelligent Beam-reconfigurable System (지능형 빔 재구성 시스템을 위한 3-D 빔 조향 안테나)

  • Lee, Chang Yong;Kim, Yong-Jin;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4773-4779
    • /
    • 2012
  • In this paper we propose two types of reconfigurable 3-D beam steering antenna for intelligent or smart antenna system. Proposed antennas are composed of triangular(structure1.) or circuler(structure2.) loop structure and bended dipole antenna structure. This antenna can steer beam pattern of 6 direction at xy-plane state (0, 1, 2) and xz-plane state (3, 4, 5) by 4 switch motion with one antenna element. Antenna structure1. is symmetric equilibrium structures based on feeding point. There is no grounding point. As a result, designed antenna's gain is similar to dipole antenna. Also, As unbalanced structure by using CPWG in the form of a semicircular, structure2. is enhanced directivity. The operation frequency of antenna are 2.5 GHz(Structure1.) and 2.55 GHz(Structure2.), maximum gain is 1.04 ~ 2.06 dBi(Structure1. : Omni-directional beam), 1.6 ~ 4 dBi(structure2. : Directional beam). The overall HPBW is about over $160^{\circ}$ in the both of the xy-plane and xz-plane at structure1. and over $125^{\circ}$ at structure2.

Glass Antenna Using Transparent IZTO/Ag/IZTO Multilayer Electrode (IZTO/Ag/IZTO 다층 투명전극을 이용한 안경용 웨어러블 안테나)

  • Hong, Seungman;Kim, Youngsung;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.372-377
    • /
    • 2016
  • Communication flow is changing rapidly. Recently, a range of wearable devices such as wearable glasses and wearable watch, have been launched. These kinds of wearable devices help people to live a more comfortable life. Wearable devices most have an antenna for wireless communication. This paper reports a transparent antenna that is made of an optically transparent material for wearable glasses. Transparent antenna can be applied to smart windows and will not disturb the view of user. IZTO/Ag/IZTO multilayer electrode has higher electrical and optical properties. This antenna is available because of its good electrical properties. This study measured the performance of the proposed transparent antenna, which is made of a multilayer electrode, applied to a lens. The proposed antenna was simulated with several substrates. The antenna impedance was matched with length and width of the antenna. The antenna's conductivity and transparency was measured using a HMS-3000 and UV-spectrometer. A 40nm thick Ag single layer antenna was fabricated on a flexible polyimide substrate for comparing the antenna performances. The fabricated antenna is useable at a frequency of 2.4-2.5GHz, which is suitable for Wifi communications and has peak gain of 2.89dBi and an efficiency of 34%.

Cognitive Beamforming Based Smart Metering for Coexistence with Wireless Local Area Networks

  • Lee, Keonkook;Chae, Chan-Byoung;Sung, Tae-Kyung;Kang, Joonhyuk
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.619-628
    • /
    • 2012
  • The ZigBee network has been considered to monitor electricity usage of home appliances in the smart grid network. ZigBee, however, may suffer from a coexistence problem with wireless local area network (WLAN). In this paper, to resolve the coexistence problem between ZigBee network and WLAN, we propose a new protocol constructing a cognitive smart grid network for supporting monitoring of home appliances. In the proposed protocol, home appliances first estimates the transmission timing and channel information of WLAN by reading request to send/clear to send (RTS/CTS) frames of WLAN. Next, based on the estimated information, home appliances transmit a data at the same time as WLAN transmission. To manage the interference between WLAN and smart grid network, we propose a cognitive beamforming algorithm. The beamforming algorithm is designed to guaranteeing zero interference to WLAN while satisfying a required rate for smart metering. We also propose an energy efficient rate adaptation algorithm. By slowing down the transmission rate while satisfying an imperceptible impact of quality of service (QoS) of the receiver, the home appliance can significantly save transmit power. Numerical results show that the proposed multiple antenna technique provides reliable communications for smart metering with reduced power comparing to the simple transmission technique.

Transparent Rectangular Patch Antenna Using Square Metal Mesh Transparent Electrode (정방형 메탈메쉬 투명전극을 이용한 투명 사각 패치 안테나)

  • Kang, Seok Hyon;Jung, Chang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.277-284
    • /
    • 2018
  • This paper reports the transparent electrode, which would be applied to transparent displays and smart glasses. Herein, a squared metal mesh with the most widely used copper wire in microwaves is studied for the alternating thin-film-type transparent and conducting indium tin oxide(ITO), with a low conductivity(sheet resistance > $5{\Omega}/sq.$). The electromagnetic performance of a patch antenna with metal mesh is analyzed. This paper presents the results of the optical(OT, optical transparent) and electrical(sheet resistance) characteristics of a squared metal mesh, which is a basic design. To improve the OT, copper wire(w=0.2 mm) is used in fabricating the squared metal mesh and the relationship between the OT and the antenna performance(radiation gain, radiation pattern) was analyzed according to the mesh size(l=1, 2 mm). The measurement results show that the antenna performance and the optical characteristic are in inverse proportion to each other. In real applications, the optical and electrical characteristics, and the costs of production are to be considered.

Smart Antenna Performance Comparison with Time-Varying DOA and without Time-Varying DOA (시변 방위 추정기를 채택한 스마트 어레이의 성능과 일반 방위 추정기를 채택한 스마트 어레이의 성능 비교)

  • Lim Jun-seok
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.245-248
    • /
    • 2002
  • 본 논문에서는 이동체에 Beam Loss를 위한 분석적 모델을 소개하고 시변 방위 추정 알고리즘을 적용하였을 때와 일반 알고리즘을 적용했을 때의 성능개선 정도를 비교한다.

  • PDF

Analysis of Downlink Wideband DS-CDMA Systems with Smart Antenna for Different Spreading Bandwidths in Wideband Multipath Channel

  • Jeon Jun-Soo;Kim Cheol-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.183-189
    • /
    • 2004
  • In this paper, the Eigen-RAKE receiver in wideband direct sequence code-division multiple access(DS-CDMA) systems with downlink smart antenna is analyzed for different spreading bandwidths(1.25 MHz, 5 MHz, 10 MHz) and different channel environments(macro, micro). The realistic spatio-temporal wideband multipath channel is assumed, one of which is standardized multiple-input single-output(MISO) radio channel model for WCDMA link-level simulations proposed by $3^{rd}$ generation partnership project(3GPP) contributions. We assumed spatial scattering phenomenon in which many unresolvable path signals within a limited range of spatial angle simultaneously contribute to the signals received at the receiver. Several multipaths within one chip are distinguished into each one and the first multipath components are selected as the desired signal and the others are considered self-interference. Downlink DS-CDMA system with eigenbeamformer using wider bandwidth present better performance than that using narrow bandwidth system by employing Eigen-RAKE receiver of many number of branches. It is shown that the downlink eigenbeamformer is more effective in typical urban macro cellular environments when using Eigen-RAKE receiver.

A Local and International Standardization Survey on Forth Generation Mobile Communication (4세대 이동통신의 국내외 표준화 연구)

  • 정영식;오행석;박기식;박치향
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.207-211
    • /
    • 2000
  • The mobile communication technology which provides various data service and satifies the required quality in wireless environment can be classified as the forth generation mobile communication technology the forth generation communication technology must has diference with the 2nd and 3nd generation mobile communication technology. It must has the more advanced and more united shape than 3nd generation mobile communication. The forth generation mobile communication technology include following technology: Adaptive coding ar modulation, Smart antenna, Interference cancellation, Advanced handoff mechanism between networks. In this study, I represent the development and standardization of this technology.

  • PDF