2002년도 한국음향학회 학술발표대회 논문집 제21권 제1(s)호

시변 방위 추정기를 채택한 스마트 어례이의 성능과 일반 방위 추정기를 채택한

스마트 어레이의 성능 비교

임준석

세종대학교

Smart Antenna Performance Comparison with Time-Varying DOA and without Time-Varying DOA

Jun-seok Lim

Sejong University

요약

본 논문에서는 이동체에 Beam Loss를 위한 분석적 모 델을 소개하고 시변 방위 추정 알고리줌을 적용하였을 때와 일반 알고리즘을 적용했을 때의 성능개선 정도를 비교한다

1. 서론

SDMA(Space division multiple access)는 제3세대 CDMA downlink의 용량을 중가시킬 방법중의 하나로 여겨지고 있다[1],[2]. 이 방법을 사용할 경우의 채용,비 용은 기지국에 국한된다. 추가되는 비용은 주로 기지국 의 기능을 개선하는데 쓰인다. 즉 시간 공간적으로 다중 경로를 추적하는 기능을 추가하는데 쓰이고, 원하는 가 입자의 위치에 따라 안테나의 밤 패턴을 달리해 주어야 하는 기능도 부가하는데 쓰인다[3]. 이런 기능을 위해석 traffic 채널에 pilot 신호를 부가하고 이를 탐지할 수 있 는 기능이 있어야 한다[4].

지금까지 알려진 3세대 CDMA시스템의 결과에서는 downlink안테나 패턴이 정확하게 다중 경로 및 이동 가 입자의 방향을 추적하고 있을 때 시스템 용량이 획기적 으로 증가한다는 결론이 도출되었다[5]. 시스템 용량 증 가는 고속 전송 이동가입자와 저속 전송 이동 가입자가 섞여있을 때 trunk 효율 측면에서 더욱 중요하다. 시간~ 공간 상에서 다중 경로 에너지를 추정하는 것은 계산이 복잡해서 부정확성이 내재하게 된다. 이런 부정확성은 경로 분해능이 부족하거나 안테나 calibration 부정확 등 이 영향을 미친다. 그 외에 search작업이 주기적으로 일 어난다. 이 search 주기는 안테나 패턴 생신 간격사이에 변하는 채널을 제대로 추정하기 위해서 더욱 중요하다. 위에 열거한 SDMA에서 가능한 부정확 요소를 살펴보 면, 각 추정의 부정확이 초래하는 이동 가입자 감도 손 실울 평가할 수 있고, 또 기지국의 search주기를 결정할 수 있다. 본 논문에서는 이를 위한 분석적 모델을 소개 하고 시변 DOA추정 알고리즘을 적용하였을 때의 성능 개선 정도를 비교하려고 한다.

2. Beamforming Loss Due to Tracking Error in Downlink SDMA

2.1 Model Definition

downlink beamforming의 간단한 예는 그림 5.1과 같다. 이 그림은 한 개의 빔으로 발신하는 예를 보이고 있다. 그림5.1을 보면 기자국과 가입자간은 *d*만큼 떨어져 있 고, 선분 *d*에 직각인 vector v 성분 당향으로 움직이고 있다. 이 그림에서 가입자의 각속도를 구하면 다음과 같 다.

$$v_{\theta} = \frac{v}{d} 2\pi \tag{1}$$

downlink때 기지국은 uplink때 수집한 정보로부터 downlink 채널을 추정한다. 그후에 기지국은 각 이동 가 입자에 대한 안테나 가중치를 결정한다[12]. 이 과정에서 가입자는 계속 움직이고 있다고 가정한다. 그러나 가중 벡터 갱신은 불연속적으로 이루어진다. 그러므로 참 가 입자 각과 기지국의 빔 방향 사이의 추적 에러가 일어난 다. 이 에러는 빔 가중치를 계산 할 때 사용하는 위치 정보가 점점 오래됨에 따라 추적 에러가 늘어난다. 또한 uplink 신호는 시공간적인 다중 경로를 계산하는데 사용 됨으로 다중 경로에 대한 도래가 추정에 오차가 발생하 면 downlink에서의 빔 방향에 오차가 발생한다.

추적 오차 효과를 보이기 위해서 Tu를 연속하는 downlink 가중치 백터 갱신 간격을 나타내면, 추적 오차 는 다음과 같이 모델할 수 있다.

$$\theta_{e mov} = v_{\theta} T_{u} = \frac{v}{d} 2\pi T_{u} \qquad (2)$$

Θ_{e rev}를 도래각 오차라고 하면 전체 추적 오차는 실제
 이동 가입자 도래각 θ_m과 downlink 침의 방위각 θ_i를
 사용하여 다음과 같이 나타낼 수 있다.

$$\theta_e \equiv \theta_m - \theta_t = \theta_{e \ mov} + \theta_{e \ rev} \quad (3)$$

가지국을 모델랑할 때, SDMA안테나 응답이 pointing angle로부터 g, dB만큼 떨어진 각 범위를 $2\phi^0$ 라고 한 다. 이런 빔을 간단히 모델하기 위해서 그림 2과 같이 선형함수로 단순 모델링한다.

또 추적 오차에 의한 손실을 *L*_t로 표시하고 다음과 같이 정의한다.

$$L_{t} = \frac{G(\theta_{m})}{G(\theta_{l})} \tag{4}$$

여기서 $G(\theta_m)$ 는 이동 가입자 방향에서의 빔 용답이고 $G(\theta_t)$ 는 downlink빔이 지향하는 각에서 빔 응답이다.

위 식은 downlink빔이 지향하는 각에서 빔 응답에 대해 서 실제 이동 가입자 방향에서의 빔 응답간의 비이다.

2.2 Analysis

그림2로부터 모델을 사용하면 손실 L_t는 다음과 같이 표 시할 수 있다.

$$L_t = 1 - \frac{|\theta_{e mov} + \theta_{e rev}|}{\phi} (1 - g_i)$$
(5)

여기서 ∲는 빔 응답이 g₁ dB인 방향각.

예로 $g_i = 0.707(3dB)$ 일 때, $\phi = 5^0$ 이라면 이 빔의 빔 폭은 $2\phi = 10^0$ 이다. 본 분석에서 θ_{erec} 는 uniform분 포를 따르는 불규칙 신호로 모델하거나 Gaussian분포를 따르는 불규칙 신호로 모델로 모델한다. 또 L_t 가 θ_{erec} 의 함수이므로 L_t 역시 불규칙 변수이다. 따라서 성능을 분석하기 위해서 L_t 의 기댓값을 계산하여야 한다.

만약 $\theta_{e \, rec}$ 가 Δ 과 - Δ 사이에 uniform 분포를 따른 다면, 그 모습은

$$f_{\theta_{env}}(\theta) = \frac{1}{2} \Delta_{env}(-\Delta_{env} \leq \theta \leq \Delta_{env}) \tau_{env}$$

$$0, \quad otherwise$$

이때 Lt의 기댓값은

$$E[L_{l}] = 1 - (1 - g_{l}) \frac{\theta_{e \mod v}}{\phi}, \Delta \leq \theta_{e \mod v}$$

$$1 - (1 - g_{l}) \frac{\theta_{e \mod v}^{2} + \Delta^{2}}{2\Delta\phi}, \Delta > \theta_{e \mod v}$$
(6)

이다.

같은 방법으로 $\theta_{e rec}$ 가 Gaussian 분포를 따른다면, 그

모슙은 ƒ_{θ,},(θ)=↓
$$e^{-\frac{\theta}{2\sigma^2}}$$
이다.
이때 Lt의 기댓값은

$$E[L_{i}] = 1 - (1 - g_{i}) \times \frac{2\sigma}{\sqrt{2\pi}} e^{\frac{\theta_{e mov}}{2\sigma^{2}}} + \theta_{e mov} \left[1 - 2Q\left(\frac{\theta_{e mov}}{\sigma}\right)\right]}{\phi}$$
(7)

이다. 여기서 Q()는 다음과 같이 정의되고 Q함수라고 읽는다.

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-\frac{x^2}{2}} dx.$$

시변 망각 인자를 갖는 칼만 잡음 부공간
 추정기 알고리듬

k번째 스냅샷(snapshot)에서 수신된 q개의 셔로 무상관 된(uncorrelated) 어레이 신호벡터 X(k)와 센서 잡음 n(k)의 수학적인 표현은 다음과 같다.

X(k) = AS(k) + n(k) (8) 여가서 $A = [a(\theta_1, ..., a(\theta_q)] = M \times q$ 신호 방향 벡터의 행렬이며 신호방향 벡터는 $a(\theta) = [1, e^{j(2\pi/\lambda)d\sin\theta}, ..., e^{j(2\pi/\lambda)d(M-1)\sin\theta}]^T$ 로 표현되는 $M \times 1$ 벡터이다. 또한 각 수식에서 사용된 변수는 다음과 같다.

s(k) q×1 : 셔로 무상관된(uncorrelated) 신호 과형 벡터. n(k) M×1 : 센서의 가산 잡음 벡터.

ג ; 파장.

d : 센서간의 간격,

식 (1)으로 수신된 벡터는 계수 행렬(adjustable)에 의해 곱해지고 V개의 출력((1≤q≤V≤M)은 식 (2)과 같다.

 $Y(k) = \widehat{W}^{T}(k)X(k), \qquad (9)$

여기서 각각의 행렬은 아래와 같이 정의된다.

 $Y = [y_1, y_2, \cdots, y_V^T].$

 $X = [x_1, x_2, \cdots, x_M].$

아래 이미 저자에 의해서 제안된 가변 망각인자를 요약한 다[6]

표 1. 시변 망각 인자를 갖는 칼만 잡음 부공간 추정기 알고리돔.

 $G(k) = \frac{K(k-1)X(k)}{(X^{T}(k)K(k-1)X(k) + Q(k)\beta(k))}$

$$\begin{split} Q(k) &= var[v_{oi}(k)] \\ P(k) &= \frac{1}{\beta(k)} \left(P(k-1) - G(k)X(k)^{T}P(k-1) \right) \\ \beta(k+1) &= \beta(k) - \alpha \operatorname{Re}[\varepsilon^{H}(k)\varepsilon^{*}(k)] \\ S(k) &= \frac{1}{\beta(k)} \left[(1 - P(k)X^{*}(k))^{H}S(k-1)(1 - P(k)X^{*}(k)) + G(k)G(k)^{H} - P(k) \right] \\ \Psi(k) &= (1 - G(k)X^{*}(k))\Psi(k-1) + S(k)X(k)\varepsilon(k) \\ \widetilde{W}_{id}(k) &= \widetilde{W}_{i}(k-1) - G(k)X^{T}(k) \ \widetilde{W}_{i}(k-1) \\ i &= 1, 2, \cdots, V \\ \widetilde{W}_{i}(k) &= \frac{\widetilde{W}_{id}(k)}{\| \| \widetilde{W}_{id} \|}, \quad i = 1, 2, \cdots, V \end{split}$$

4. 실험 및 결과

본 장에서는 3장에서 요약된 알고리즘의 성능을 일반 고정 망각인자 알고리즘과 Beam Loss측면에서 비교하 는 컴퓨터 모의 실험을 한다. 실험은 시간당 각도의 변 화율을 달리하면서 제안된 알고리즘과 일반 알고리즘의 성능을 서로 비교한다.

표2는 신호발생 재원를 요약하였고, 표3은 각 제원에 따 른 Beam Pointing Error를 나타내고 있다. 각도 정확은 고정 망각인자의 경우가 우수함을 보여 주고 있다. 그러 나 가변 망각인자의 정확도 정도가 일반적인 통신용 안 테나의 법 폭에 비해서 상당히 작은 값이므로 충분히 우 수하다고 말할 수 있다.

표 2 신호 규격

rad/snapshot	stationary 구간	Nonstationary구간
0.01	200	30(0.1-0.4)
0.005	200	60(0.1-0.4)
0.001	200	300(0.1-0.4)
0.0005	200	600(0.1-0.4)
0.0001	200	1000(0.1-0.2)

표 3 시변 알고리즘과 고정 망각인자 알 고리즘의 성능비교

	mean[°]	std[°]
0.0001	0.7433	1.9643
	1.2345(0.98)	0.4:05
0.0005	1.7197	2.0'64
	8.4445(0.98)	2.2267
0.001	3.0318	2.3231
	17.4642(0.98)	6.724
0.005	8.8251	3.6406
	41.8014(0.98)	24.0634
0.01	13.1109	5.6570
	46.5502(0.98)	27.5397

5. 결론

본 논문에서는 움직임을 보상하는 기능을 갖는 스마트 어레이의 성능을 Beam Loss를 평가 척도로 삼아 평가 하였다. 평가 결과 움직임 보상 기능을 추가함으로써 스 마트 어레이의 성능을 향상 시킬 수 있음을 보였다.

참고문헌

- B. D. Van Veen and K. M. Buckley, "Beamforming: A Versatile Approach to Spatial Filtering," *IEEE ASSP Magazine*, pp. 4-24, April, 1988.
- [2] A. F. Naguib, A. Paulraj and T. Kailath,"Capacity Improvement with Base-station Antenna Arrays in Cellular CDMA," *IEEE TRans. on Veh Technol.*, vol. 43, no. 3, pp. 691~698, Aug., 1994.
- [3] B. H. Khalaj, A. Paulraj and T. Kailath,"2D RAKE Receivers for CDMA Cellular Systems," *Proc. IEEE Globecom*, pp. 400~4(4, 1994.
- [4] S. D. Gray and H. Honkasalo,"Nokia's 3rd Generation CDMA Physical Layer Proposal," Nokia, TR45.5.4/97.06.17.07, Philadelphia, PA, pp. 16~20, June, 1997.
- [5] S. D. Gray and H. Honkasalo,"Capacity Analysis for Using Traffic Channel Specific Pilot," Nokia, TR45.5.4/97.07.09.04, Chicago, IL, p. 9, July, 1997.
- [6] 임준석, "시변 망각 인자를 갖는 칠만 MUSIC 주과 수 추정기 연구," 한국음향학회 하계 학술대회 논문 집, Vol. 20, No.1(s), pp. 349~352, 2001.