• Title/Summary/Keyword: small-strain shear modulus

Search Result 69, Processing Time 0.024 seconds

Dynamic Deformation Characteristics of Joomunjin Standard Sand Using Cyclic Triaxial Test (반복삼축압축시험을 이용한 주문진 표준사의 동적변형특성 분석)

  • Kim, You-Seong;Ko, Hyoung-Woo;Kim, Jae-Hong;Lee, Jin-Gwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.53-64
    • /
    • 2012
  • In this study, the modified cyclic triaxial tests with Joomunjin standard sand are performed for dynamic deformation characteristics, such as Young's moduli and damping ratio. The cyclic triaxial test is equipped with Local Displacement Transducer (LDT) on the outside of a cell which has a range from $10^{-4}$ to $10^{-1}$ of shear strains, ${\gamma}$ (%), instead of conventional cyclic triaxial test which has linear variable displacement transducer (LVDT) with low precision. With the small strain control, tests were carried out at various loading rates, void ratios, and effective confining pressures. Based on the test results, such as dynamic deformation characteristics, shear modulus, and damping ratio, it is found that the test can measure more range of medium strains (0.02-0.2%) than results obtained from conventional test (resonant column test). For the medium strain range, dynamic deformation characteristics investigated by the cyclic triaxial test are also different from those predicted by nonlinear model in conventional test.

Evaluation of Shear Zone in Direct Shear Test Using Elastic, Electromagnetic Waves and Cone Tip Resistance (전단파, 전자기파 및 콘 관입저항력을 이용한 직접전단실험시 전단영역 특성 평가)

  • Byun, Yong-Hoon;Truong, Q. Hung;Tran, M. Khoa;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.43-52
    • /
    • 2011
  • The characteristics of shear zone in granular soils largely affect the stability of geo-structures. The goal of this study is to evaluate shear zone in a direct shear test using shear wave, electrical resistivity, and cone tip resistance. Bender elements and electrical resistivity probe are embedded into the wall of a direct shear box made of transparent acrylic material to estimate the shear wave velocities and the electrical resistivity at shear and non-shear zones. At the point of peak and residual strength, micro cone penetration test which can be available to measure tip resistance has been performed. Experimental results show that the shear wave velocities at upper shear zone increase during shearing while the values remain constant at bottom and lower shear zone. Also, resistivities at lower shear zone depend on relative density while resistivities at bottom remain constant. The results of cone penetration test demonstrate the correlation of the cone tip resistance and small strain shear modulus at shear zone. This study suggests that the application of the modified direct shear box including shear wave, electrical resistivity and the micro cone tip resistance may become effective tools for analyzing the characteristics of a shear zone.

Analytic adherend deformation correction in the new ISO 11003-2 standard: Should it really be applied?

  • Ochsner, A.;Gegner, J.;Gracio, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2004
  • For reliable determination of mechanical characteristics of adhesively bonded joints used e.g. as input data for computer-aided design of complex components, the thick-adherend tensile-shear test according to ISO 11003-2 is the most important material testing method. Although the total displacement of the joint is measured across the polymer layer directly in the overlap zone in order to minimize the influence of the stepped adherends, the substrate deformation must be taken into account within the framework of the evaluation of the shear modulus and the maximum shear strain, at least when high-strength adhesives are applied. In the standard ISO 11003-2 version of 1993, it was prescribed to perform the substrate deformation correction by means of testing a one-piece reference specimen. The authors, however, pointed to the excessive demands on the measuring accuracy of the extensometers connected with this technique in industrial practice and alternatively proposed a numerical deformation analysis of a dummy specimen. This idea of a mathematical correction was included in the revised ISO 11003-2 version of 2001 but in the simplified form of an analytical method based on Hooke's law of elasticity for small strains. In the present work, it is shown that both calculation techniques yield considerably discordant results. As experimental assessment would require high-precision distance determination (e.g. laser extensometer), finite element analyses of the deformation behavior of the bonded joint are performed in order to estimate the accuracy of the obtained substrate deformation corrections. These simulations reveal that the numerical correction technique based on the finite element deformation modeling of the reference specimen leads to considerably more realistic results.

  • PDF

Experimental Study on the Elastic Constants of A Transversely Isotropic Rock by Multi-Specimen Compression Tests Report 1 - Focus on Data Analysis (다중시험편 시험에 의한 평면이방성 암석의 탄성상수 분석연구 제 1 보 - 자료해석을 중심으로)

  • Park, Chul-Whan;Park, Chan;Synn, Joong-Ho;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.455-464
    • /
    • 2010
  • The variations of the uniaxial compressive strength, the strains and the elastic constants with respect to the angle of anisotropy are analyzed in order to investigate the characteristics of a transversely isotropic rock experimentally. Total 35 specimens of 7 different angles from a large block of rhyolite presenting the flow structure obviously are used in tests. This study is composed of two reports; the elastic constants are mainly analyzed for the every individual angle in the report No. 1 and they will be discussed synthetically in the report No. 2. From the specimens of 0 and 90 degree, 4 independent elastic constants which can directly be obtained without the help of any other suggested equations, may be referred to the true values. Data variation in the strain measurements differs on the angle is analyzed. That of small angle specimens tends higher than that of large angle specimens. The relation of apparent Young’s modulus and angle is found to be M- or U-shaped. For small angle specimens, Saint-Venant approximation cannot be applied successfully on account of showing the non-monotonous increase, and E1 is analyzed out of the true value range. In the specimen of $\phi$ = 75, the deviation of strain measurement and strength are smallest and 4 all constants are analyzed in the true value range. Therefore, specimen of the angle of around 75 may become preferable if only one specimen should be used in test of a transversely isotropic rock.

An Evaluation of Applicable Feature of Structural Member Using High Volume Fly-Ash Concrete (다량치환된 플라이애시 콘크리트의 구조부재 적용성 평가)

  • Kim, Gyung-Tae;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Recently, numerous studies were dedicated on the HVFA concrete using high volume CCPs. In initial studies, main topics are dependent on material properties of HVFA concrete, but several studies were dedicated on the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship and structural behavior nowadays. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 large-scale test members were manufactured with 7.5m span length and fly ash replacement ratio 50%, concrete compressive strength 50MPa in order to apply to the practical structure and evaluate possibility of application. From the test results, although there were small differences between test results and existing research results on the stress-strain relationship, the application to practical structure is not hard. In flexural test, as the produced pattern of displacement and strain were similar to those of general concrete without fly ash, the difference between 50% fly ash concrete and general concrete is very small. And the concrete shear strength obtained by test was similar to that of design code, so existing design code will be also able to apply.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya;Tee, Wei Zhong;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.409-422
    • /
    • 2022
  • The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

CHARACTERIZATION OF GEOTECHNICAL SITES BY MULTI-CHANNEL ANALSIS OF SURFACE WAVES(MCASW) (지표층의 탄성계수 측정을 위한 새로운 탄성파 방법)

  • 박춘병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.15.2-22
    • /
    • 1995
  • Evaluating stiffness of near-surface materials has been one of the critically important tasks in many civil engineering works. It is the main goal of geotechnical characterization. The so-called deflection-response method evaluates the stiffness by measuring stress-strain behavior of the materials caused by static or dynamic load. This method, however, evaluates the overall stiffness and the stiffness variation with depth cannot be obtained. Furthermore, evaluation of a large-area geotechnical site by this method can be time-consuming, expensive, and damaging to many surface points of the site. Wave-propagation method, on the other hand, measures seismic velocities at different depths and stiffness profile (stiffness change with depth) can be obtained from the measured velocity data. The stiffness profile is often expressed by shear-wave (S-wave) velocity change with depth because S-wave velocity is proportional to the shear modulus. that is a direct indicator of stiffiiess. The crosshole and downhole method measures the seismic velocity by placing sources and receivers (geophones) at different depths in a borehole. Requirement of borehole installation makes this method also time-consuming, expensive, and damaging to the sites. Spectral-Analysis-of-Surface-Waves (SASW) method places both source and receivers at the surface, and records horizontally-propagating surface waves. Based upon the theory of surfacewave dispersion, the seismic velocities at different depths are calculated by analyzing the recorded surface-wave data. This method can be nondestructive to the sites. However, because only two receivers are used, the method requires multiple measurements with different field setups and, therefore, the method often becomes time-consuming and labor-intensive. Furthermore. the inclusion of noise wavefields cannot be handled properly, and this may cause the results by this method inaccurate. When multi-channel recording method is employed during the measurement of surface-waves, there are several benefits. First, usually single measurement is enough because multiple number (twelve or more) of receivers are used. Second, noise inclusion can be detected by coherency checking on the multi-channel data and handled properly so that it does not decrease the accuracy of the result. Third, various kinds of multi-channel processing techniques can be applied to f1lter unwanted noise wavefields and also to analyze the surface-wavefields more accurately and efficiently. In this way, the accuracy of the result by the method can be significantly improved. Fourth, the entire system of source, receivers, and recording-processing device can be tied into one unit, and the unit can be pulled by a small vehicle, making the survey speed very fast. In all these senses, multi-channel recording of surface waves is best suited for a routine method for geotechnical characterization in most of civil engineering works.

  • PDF