Browse > Article
http://dx.doi.org/10.7843/kgs.2011.27.2.043

Evaluation of Shear Zone in Direct Shear Test Using Elastic, Electromagnetic Waves and Cone Tip Resistance  

Byun, Yong-Hoon (School of Civil, Environmental, and Architectural Engrg., Korea Univ.)
Truong, Q. Hung (Overseas Civil Engrg. and Construction Department, Ssangyong Engrg. and Construction Company)
Tran, M. Khoa (School of Civil, Environmental, and Architectural Engrg., Korea Univ.)
Lee, Jong-Sub (School of Civil, Environmental, and Architectural Engrg., Korea Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.27, no.2, 2011 , pp. 43-52 More about this Journal
Abstract
The characteristics of shear zone in granular soils largely affect the stability of geo-structures. The goal of this study is to evaluate shear zone in a direct shear test using shear wave, electrical resistivity, and cone tip resistance. Bender elements and electrical resistivity probe are embedded into the wall of a direct shear box made of transparent acrylic material to estimate the shear wave velocities and the electrical resistivity at shear and non-shear zones. At the point of peak and residual strength, micro cone penetration test which can be available to measure tip resistance has been performed. Experimental results show that the shear wave velocities at upper shear zone increase during shearing while the values remain constant at bottom and lower shear zone. Also, resistivities at lower shear zone depend on relative density while resistivities at bottom remain constant. The results of cone penetration test demonstrate the correlation of the cone tip resistance and small strain shear modulus at shear zone. This study suggests that the application of the modified direct shear box including shear wave, electrical resistivity and the micro cone tip resistance may become effective tools for analyzing the characteristics of a shear zone.
Keywords
Direct shear test; Resistivity; Shear zone; Shear waves; Cone tip resistance;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Mühlhaus, H. B. and Vardoulakis, I. (1987), "The thickness of shear bands in granular materials", Geotechnique, Vol.37, No.3, pp.271-283.   DOI   ScienceOn
2 Oda, M. and Kazama, H. (1998), "Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils", Geotechnique, Vol.48, No.4, pp.465-481.   DOI   ScienceOn
3 Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), Soils and Waves - Particulate Materials Behavior, Characterization and Process Monitoring, John Wiley and Sons, New York.
4 Yu, P. and Richart, F. E. Jr. (1984), "Stress Ratio Effects on Shear Modulus of Dry Sands", Journal of Geotechnical Engineering, Vol.110, No.3, pp.331-345.   DOI
5 Archie, G. E. (1942), "The electrical resistivity log as an aid in determining some reservoir characteristics", Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 146, pp.54-62.
6 Liu, Z., Shi, B., and Sheng, D. (2006), "A micropenetrometer for detecting structural strength inside soft soils", Geotechnical Testing Journal, ASTM, 29(6), pp.443-450.
7 Bardet, J. P. and Proubet, J. (1991), "A numerical investigation of the structure of persistent shear bands in granular media", Geotechnique, Vol.41, No.4, pp.599-613.   DOI
8 Head, K. H. (1982), Manual of soil laboratory testing. Volume 2: Permeability, shear strength and compressibility tests, London: Pentech Press.
9 Lee, C., Lee, J. S., Lee, W., and Cho, T. H. (2008), "Experiment setup for shear wave and electrical resistance measurements in an oedometer", Geotechnical Testing Journal, ASTM, 31(2), pp.149-156.
10 Masson, S. and Martinez, J. (2001), "Micromechanical analysis of the shear behavior of a granular material", Journal of Engineering Mechanics, Vol.127, No.10, pp.1007-1016.   DOI   ScienceOn
11 ASTM D 3080 (2004), "Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
12 이종섭, 신동현, 윤형구, 이우진 (2008), "초소형 마이크로콘 관입시험기의 개발 및 적용", 한국지반공학회 논문집, 제24권 2호, pp.77-86.
13 정자영, 김종열, 최용환, 강희복 (2001), "직접전단시험기의 메카니즘에 따른 전단강도정수 비교", 2001 대한토목학회 봄학술발표회, pp.1-4.
14 쭝꽝훙, 변용훈, 엄용훈, 심영종, 이종섭 (2009), "지반 소실 혼합 재의 용해과정 모니터링", 한국지반공학회 논문집, 제 25권 10 호, pp.111-122.
15 Alshibli, K. and Sture, S. (2000), "Shear Band Formation in Plane Strain Experiments of Sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.6, pp.495-503.   DOI   ScienceOn
16 김재영, 류동훈, 이재성, 大島昭彥 (2004), "개량형 일면직접전단 시험기의 제작과 정체적.정압조건의 전단시험에 대하여", 한국지반공학회지, 제20권, 제5호, pp.58-65.
17 김준한, 윤형구, 정순혁, 이종섭 (2009a), "4전극 전기비저항 탐사장비의 개발 및 검증", 대한토목학회 논문집, 제29권, 3C호, pp.127-136.
18 김준한, 윤형구, 정순혁, 이종섭 (2009b), "전기비저항 콘 프로브를 이용한 해안 연약 지반의 간극률 산정", 한국지반공학회논문집, 제25권, 2호, pp.45-54.
19 민덕기, 김치영 (2006), "DIP 기법을 이용한 조립토의 전단영역 크기 분석", 한국지반공학회논문집, 제22권, 8호, pp.89-97.
20 변용훈, 쭝꽝훙, 짠밍콰, 이종섭 (2010), "개선된 직접전단시험을 이용한 전단영역의 거동", 2010 한국지반공학회 봄학술발표회, pp.607-614.
21 김종열, 최용환, 정자영, 강권수 (2000), "직접전단시험 형태에 따른 주문진 표준사의 전단정수 고찰", 2000 대한토목학회 가을학술발표회, pp.439-442.