• Title/Summary/Keyword: small-signal stability

Search Result 195, Processing Time 0.029 seconds

Analysis of the Factors Affecting Low-Frequency Oscillations in KEPCO Power System` With Pumped-Storage Plant (한전 전력계통의 저주파 진동현상 요인분석;양수발전기 기동시)

  • Kil Yeong Song;Sae Hyuk Kwon;Kyu Min Ro;Seok Ha Song
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.841-849
    • /
    • 1992
  • In power system operation, the stability of synchronous machine has been recognized one of the most important things. AESOPS program developed by EPRI in U.S.A. is a frequency domain analysis program in power system stability and it computes the electro-mechanical oscillation mode. This paper presents how to analyze the power system small signal stability problem efficiently by uusing the AESOPS program and analyze the various factors affecting the damping characteristics of these oscillations in KEPCO power system of 1986 with pumped-storage plant. To reduce the computing time and efforts, selecting the poorly-damped oscillation mode and clustering technique have been used. The characteristics of load, the amount of power flow on the transmission line and the gain of exciter have a significant effects on the damping of the system while the governing system has only a minor one. With the Power System Stabilizers, the stability of the power system has been improved.

  • PDF

Scaling Factor Design Based Variable Step Size Incremental Resistance Maximum Power Point Tracking for PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2012
  • Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations, and experimentally using a fixed point digital signal processor (TMS320F2808).

Improvement of acoustic feedback stability by bandwidth compression and expansion

  • 염동홍;안수길
    • The Journal of the Acoustical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.16-21
    • /
    • 1985
  • Both shifiting the input signal's frequencies by a fixed frequency and compressing the input signal's bandwidth have been known to be effective in improving the stability margin of public adress systems operating in reverberant spaces. This paper describes the effect of an alternative approach of improving the acoustic-feedback stability and yet maintaining speech inteligibility by bandwidth compression and expansion. Conditions are derived for this technizue to be realized and an experimental system has been made - up. A series of experiments has been performed in small spaces and the results have shown that more than 5dB improvement can be obtained in the stability margin.

  • PDF

Contingency Analysis of Small Signal Stability for MW Changes (발전량 변화와 미소신호안정도 상정사고 해석)

  • Shim, K.S.;Song, S.G.;Moon, C.J.;Kim, Y.G.;Nam, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.139-141
    • /
    • 2002
  • This paper describes a new contingency analysis methods for small signal security assessment based on the eigenvalue perturbation. The eigenvalue perturbation with respect to MW changes can be used to find possible sources of the low frequency oscillation, and to select contingency for small signal stability. The proposed algorithm has been successfully tested on the KEPCO systems.

  • PDF

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Shim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1033-1036
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Shim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.685-688
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Kim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.365-368
    • /
    • 1998
  • In this research project two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

a study on UPFC Controller for enhancing the Multi-machine Power System Dynamic Stability (다기 전력 시스템 동적 안정도 향상을 위한 UPFC 제어기에 관한 연구)

  • Kim, Jong-Hyun;Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.93-95
    • /
    • 2002
  • This paper presents the design of a Unified Power Flow Controller(UPFC) for enhancing the small signal voltage stability in the multi-machine power systems. Recently a lot of attention has been paid to the subject of dynamic stability. The paper deals with analysis of eigenvalue sensitivities with respect to parameters of UPFC Controller. The series branch of the UPFC is designed to damp the power oscillation during transients, while the shunt branch aims at maintaining the bus voltage. Comprehensive time-domain simulation studies using Pss/E show that the proposed robost UPFC controller can enhance the small signal stability efficiently in spite of the variations of power system operating conditions.

  • PDF

Development of Selective Eigen-Sensitivity Techniques for Line Parameter (선로정수에 대한 선택적인 고유치감도 기법의 개발)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Ku;Song, Sung-Geun;Moon, Chae-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1299-1301
    • /
    • 1999
  • This paper describes a initial screening methods for weak line selection using sensitivity matrix. The elements of sensitivity matrix for line suceptance have 1 or -1, 0. From this property of sensitivity matrix, the eigen-sensitivity for line suceptance can be computed very simply and selected weak line for small signal stability or transient stability. The proposed algorithm is applied to small signal stability of New England 39-bus system and also applied to voltage stability of New England 30-bus system too.

  • PDF

Study on Small-signal Modeling and Controller Design of DC-DC Dual Active Bridge Converters (DC-DC Dual Active Bridge 컨버터의 소신호 모델링 및 제어기 설계에 관한 연구)

  • Lee, Won-Bin;Choi, Hyun-Jun;Cho, Jin-Tae;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2017
  • Small-signal modeling and controller design methodology are proposed to improve the dynamics and stability of a DC-DC dual active bridge (DAB) converter. The state-space average method has a limitation when applied to the DAB converter because its state variables are nonlinear and have zero average values in a switching period. Therefore, the small-signal model and the frequency response of the DAB converter are derived and analyzed using a generalized average method instead of conventional modeling methods. The design methodology of a lead-lag controller instead of the conventional proportional-integral controller is also proposed using the derived small-signal model. The accuracy and performance of the proposed small-signal model and controller are verified by simulation and experimental results with a 500 W prototype DAB converter.