• Title/Summary/Keyword: small-scale wind power

Search Result 83, Processing Time 0.023 seconds

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

CFD and experiment validation on aerodynamic power output of small VAWT with low tip speed ratio (저속 회전형 소형 수직축 풍력발전기의 공기역학적 출력에 대한 CFD 및 실험적 검증)

  • Heo, Young-Gun;Choi, Kyoung-Ho;Kim, Kyung-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.330-335
    • /
    • 2016
  • In this study, aerodynamic characteristics of the blades of a helical-type vertical axis wind turbine(VAWT) have been investigated. For this purpose, a 100-W helical-type vertical axis wind turbine was designed using a design formulae, and a 3D computational fluid dynamics analysis was performed considering wind tunnel test conditions. Through the results of the analysis, the aerodynamic power output and flow characteristics of a helical blade were confirmed. In order to validate the aerodynamic power output obtained through the analysis, a wind tunnel test was performed by using a full-scale helical-type vertical axis wind turbine. The 3D analysis technique was validated by comparing its results with those obtained from the wind tunnel test.

A Basic Study for Wind Energy of Building Cladding using Computational Fluid Dynamics (CFD를 이용하여 건물 외피의 바람에너지에 관한 적용연구)

  • Chung, Yung-Bea
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$ $$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.

  • PDF

Characteristics Analysis of a Direct-Drive AFPM Generator for 5kW Wind Turbine (직접 구동용 5kW AFPM 풍력 발전기 특성 해석)

  • Kim, Hyoung-Gil;Kim, Chul-Ho;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.773-774
    • /
    • 2006
  • Nowadays, the global interests are concentrated on the preserving of the clean environment, and the diminishing of the dependence on the fossil energy, and among the possible alternative energies, the wind turbine generating system is considered to be the best suited to produce high efficiency energy, without affecting the natural environment. The permanent magnet generators were been used for the wind power generating, for long time, with continuous efforts to improve the generating efficiency. And the latest trend on it is to develop an AFPM(Axial Flux Permanent Magnet)type, which is composed in the structure of rotor and stator shaped in the disc forms, and the direction of the flux at the air gap runs in parallel to the shaft. This thesis is on the study concerning with the analysis of the characteristics of the 5 kW at 300rpm direct drive AFPM generator which is suitable for the small scale wind turbine generating system. In it, the Electro-magnetically Coreless AFPM was been analyzed, the prototype generators been made, concentrated on interpreting the characteristics of the power output, and verifying it through the theoretical study and practical tests.

  • PDF

Characteristics Comparison of Axial and Radial Flux Permanent Magnet Generators for 1.5kW Class Wind Power Systems (1.5kW급 풍력발전용 축자속/반경자속 영구자석 발전기의 특성 비교)

  • Ko, Kyoung-Jin;Jang, Seok-Myeong;Koo, Min-Mo;Lee, Sung-Ho;Han, Sang-Chul;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1075-1076
    • /
    • 2011
  • This paper compares performance characteristics and mechanical design specifications of outer rotor radial flux type and double-sided axial flux type permanent magnet generator for 1.5-kW class small scale wind power applications to suggest most suitable type. In order to analyze electromagnetic performances of two different type generators, this paper performs generating performance and efficiency characteristic analysis from electrical parameters obtained by using nonlinear finite element analysis using commercial software, electromagnetic losses characteristics equations and d-q characteristics equation. Considering the derived electromagnetic performance, mechanical design specifications and manufacturing cost, the best suitable model for 1.5-kW class wind power system is determined, and its experiment was performed to validate the suggested analysis method.

  • PDF

Conceptual Design of Motion Reduction Device for Floating Wave-Offshore Wind Hybrid Power Generation Platform (부유식 파력-해상풍력 복합발전 플랫폼의 운동저감장치 개념설계)

  • Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • The present study deals with the conceptual design of a motion reduction device for a floating wave-offshore wind hybrid power generation platform. A damping plate attached to the bottom of a column of a large semi-submersible is introduced to reduce the motion of the platform. Performance analyses on various shapes and configurations of damping plates were performed using the potential flow solver, and the appropriate configuration and size of the damping plate were selected based on the numerical results. In order to see the effect of viscous damping, a small scale model test was performed in a 2D wave flume. The performances of five different damping plates were measured and discussed based on the results of free decay tests and regular wave tests.

A Study of Integrated SCADA System for Wind Farm to Support Interoperability (이기종간의 상호운용을 지원하는 풍력발전 통합 SCADA 시스템에 관한 연구)

  • Kim, Young-Gon;Moon, Chae-Joo;Joo, Yeong-Tae;Park, Tae-Sik;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.70-76
    • /
    • 2013
  • Recently industrial control systems have been required to ensure intelligent, high tech automation, interconnection and interoperability demands. Therefore, there is a need to redefine the structure concepts of SCADA system for wind power. Also, at this time, the integrated management system is required for the distributed development of wind farms where are needed often interoperability features and exchange information between different wind farms, wind turbines or SCADA systems. In this paper, an integrated structural concepts for SCADA system are defined. Based on this definition of an integrated SCADA system, the basic designs are analyzed on physical layer, system layer and application layer which are corresponded to wind turbine controller, the SCADA server and the SCADA client, and implement HMI. Between the implementation SCADA server and the client, their normal functions were verified at the small scale wind energy test facilities.

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites (PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성)

  • Lee, Min-Seon;Park, Jin-woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.90-98
    • /
    • 2021
  • Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Characteristics Analysis is of Permanent-Magnet Type Wind Generator with Variable Load (부하가변에 따른 영구자석형 풍력발전기의 운전특성 해석)

  • Hwang, Don-Ha;Kang, Do-Hyun;Kim, Yong-Joo;Choi, Kyeong-Ho;Bae, Sung-Woo;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.121-123
    • /
    • 2002
  • This paper presents the finite-element (FE) analysis results of a permanent-magnet (PM) generator for wind-power applications under different operating conditions. Finite-element method is applied to analyze generator performance at no-load and load with variable resistance and inductance. The results of FE analysis show that proposed PM generator is a useful solution for small-scale wind-turbine systems.

  • PDF