• Title/Summary/Keyword: small-angle X-ray scattering

Search Result 84, Processing Time 0.02 seconds

Order-to-disorder Behavior of Block Copolymer Films

  • Ryu, Du-Yeol;Kim, Eun-Hye;Choe, Seung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.2-6.2
    • /
    • 2011
  • Block copolymer (BCP) self-assembly in a film geometry has recently been the focus of increased research interest due to their potential use as templates and scaffolds for the fabrication of nanostructured materials. The phase behavior in a thin film geometry that confines polymer chains to the interfaces will be influenced by the interfacial interactions at substrate/polymer and polymer/air and the commensurability between the equilibrium period (L0) of the BCP and the total film thickness. We investigated the phase transitions for the films of block copolymers (BCPs) on the modified surface, like the order-to-disorder transition (ODT) by in-situ grazing incidence small angle x-ray scattering (GISAXS) and transmission electron microscopy (TEM). The selective interactions on the surface by a PS-grafted substrate provide the preferential interactions with the PS component of the block, while a random copolymer (PS-r-PMMA) grafted substrate do the balanced interfacial interactions on the surface. The thickness dependence of order-to-disorder behavior for BCP films will be discussed in terms of the surface interactions.

  • PDF

Processing of Microcellular Nanocomposite Foams by Using a Supercritical Fluid

  • Wee, Dongho;Seong, Dong Gi;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • Polystyrene/layered silicate nanocomposites were prepared by melt intercalation. To examine the distribution of the clay in polymer matrix, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) were used. Intercalated nanocomposites were obtained and their rheological properties were investigated. Microcellular nanocomposite foams were produced by using a supercritical fluid. As clay contents increased, the cell size decreased and the cell density increased. It was found that layered silicates could operate as heterogeneous nucleation sites. As the saturation pressure increased and the saturation temperature decreased, the cell size decreased and the cell density increased. Microcellular foams have different morphology depending upon the dispersion state of nanoclays.

Degradation and Rheological Properties of Biodegradable Nanocomposites Prepared by Melt Intercalation Method

  • Lee, Su-Kyong;Seong, Dong-Gi;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2005
  • Biodegradable nanocomposites were prepared by mixing a polymer resin and layered silicates by the melt intercalation method. Internal structure of the nanocomposite was characterized by using the small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). Nanocomposites having exfoliated and intercalated structures were obtained by employing two different organically modified nanoclays. Rheological properties in shear and extensional flows and biodegradability of nanocomposites were measured. In shear flow, shear thinning behavior and increased storage modulus were observed as the clay loading increased. In extensional flow, strain hardening behavior was observed in well dispersed system. Nanocomposites with the exfoliated structure had better biodegradability than nanocomposites with the intercalated structure or pure polymer.

Mechanism of Morphological Transition from Lamellar/Perforated Layer to Gyroid Phases

  • Ahn, Jong-Hyun;Zin, Wang-Cheol
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.152-156
    • /
    • 2003
  • We investigated epitaxial relations of phase transitions between the lamellar (L), hexagonally perforated layers (HPL), and gyroid (G) morphologies in styrene-isoprene diblock copolymer (PSI) and polyisoprene (PI)/PSI blend using rheology and small angle X-ray scattering (SAXS) techniques. In HPLlongrightarrowG transitions, six spot patterns of G phase were observed in two-dimensitional SAXS pattern. On the other hand, in direct L-longrightarrowG transition without appearance of HPL phase, the polydomain patterns of G phase were observed. From present study, it was understood that direct LlongrightarrowG transition of blend may be suppressed by high-energy barrier of transition and mismatches in domain orientation between epitaxially related lattice planes.

Synthesis and Characterization of Co-Surfactant Templated Mesoporous Materials with Enhanced Hydrothermal Stability

  • Kim Geon-Joong;Kim Hyun-Seok;Ko Yoon Soo;Kwon Yong Ku
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.499-505
    • /
    • 2005
  • Ordered mesoporous materials with a hydrothermally-stable, protozeolitic framework were prepared by exploring the direct conversion of inorganic species based on co-surfactant templating systems. To confer hydrothermal stability on the mesoporous aterials, the organic-inorganic hybrids were heat-treated in strongly basic media. Co-surfactant templating systems of cetyltrimethylammonium bromide [$C_{16}H_{13}(CH_{3})_{3}$NBr, CTAB] with 1,3,5-trim­ethylbenzene (TMB) or a nonionic block copolymer of poly(ethylene oxide )-b-poly(propylene oxide )-b-poly(ethyl­ene oxide) ($EO_{20}PO_{70}EO_{20}$) were employed to improve the hydrothermal stability of the organic-inorganic self-assembly during the solid rearrangement process of the inorganic species. The mesoscopic ordering of the pore structure and geometry was identified by X-ray diffraction, small angle neutron scattering and electron microscopy.

Free Volume in polymers. Note I。 : Theoretical background

  • Consolati, G.;Pegoraro, M.;Zanderighi, L.
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.8-24
    • /
    • 1999
  • free volume in polymers is defined as the difference of the specific volume and the volume which is not available for the particular molecular motion which is responsible or the process that is considered . Relations between free volume and viscosity free volume and diffusion coefficient are pre-sented both in the case of simple low molecular weight liquids and in the case of polymers. Molecular models and free volume models are reminded starting from the equilibrium state equation of Simha and Somcynski. The non equilibrium situations of specific volume of glass polymers below Tg are shown introducing different relaxation volume equations which involve different material's parameters and con-cept of the fictitious temperature. The diffusivity equations of Vrentas and Duda are introduced both for the glassy and rubbery states. The possibility of introducing time relaxation functions is also suggested. The importance of finding experimental evidences of the free volume is stressed. highlights of the free volume measurement methods are given in particular as to dilatometry photocromy fluorescence electron spin resonance small angle X-ray scattering positron annihilation spectroscopy.

  • PDF

Rheological Behavior of Polymer/Layered Silicate Nanocomposites under Uniaxial Extensional Flow

  • Park Jun-Uk;Kim Jeong-Lim;Kim Do-Hoon;Ahn Kyung-Hyun;Lee Seung-Jong;Cho Kwang-Soo
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.318-323
    • /
    • 2006
  • We investigated the rheological behaviors and orientation of three different types of layered silicate composite systems under external flow: microcomposite, intercalated and exfoliated nanocomposites. Rheological measurements under shear and uniaxial extensional flows, two-dimensional, small-angle X-ray scattering and transmission electron microscopy were conducted to investigate the properties, as well as nano- and micro-structural changes, of polymer/layered silicate nanocomposites. The preferred orientation of the silicate layers to the flow direction was observed under uniaxial extensional flow for both intercalated and exfoliated systems, while the strain hardening behavior was observed only in the exfoliated systems. The degree of compatibility between the polymer matrix and clay determined the microstructure of polymer/clay composites, strain hardening behavior and spatial orientation of the clays under extensional flow.

Effect of Annealing of Nafion Recast Membranes Containing Ionic Liquids

  • Park, Jin-Soo;Shin, Mun-Sik;Sekhon, S.S.;Choi, Young-Woo;Yang, Tae-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The composite membranes comprising of sulfonated polymers as matrix and ionic liquids as ion-conducting medium in replacement of water are studied to investigate the effect of annealing of the sulfonated polymers. The polymeric membranes are prepared on recast Nafion containing the ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ($EMIBF_4$). The composite membranes are characterized by thermogravitational analyses, ion conductivity and small-angle X-ray scattering. The composite membranes annealed at $190^{\circ}C$ for 2 h after the fixed drying step showed better ionic conductivity, but no significant increase in thermal stability. The mean Bragg distance between the ionic clusters, which is reflected in the position of the ionomer peak (small-angle scattering maximum), is larger in the annealed composite membranes containing $EMIBF_4$ than the non-annealed ones. It might have been explained to be due to the different level of ion-clustering ability of the hydrophilic parts (i.e., sulfonic acid groups) in the non- and annealed polymer matrix. In addition, the ionic conductivity of the membranes shows higher for the annealed composite membranes containing $EMIBF_4$. It can be concluded that the annealing of the composite membranes containing ionic liquids due to an increase in ion-clustering ability is able to bring about the enhancement of ionic conductivity suitable for potential use in proton exchange membrane fuel cells (PEMFCs) at medium temperatures ($150-200^{\circ}C$) in the absence of external humidification.

Microphase Separation and Crystallization in Binary Blends Consisting of Poly (methyl methacrylate)-block-Polystyrene Copolymer and Poly (vinylidene fluoride) (폴리(메틸 메타크릴레이트)-폴리스티렌 이종 블록 공중합체/폴리(비닐리덴 플루오라이드) 블렌드의 미세 상분리와 결정화)

  • 김지선;이광희;조성무;류두열;김진곤
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.509-518
    • /
    • 2004
  • Microdomain structures and crystallization behavior of the binary blends consisting of an asymmetric block copolymer and a homopolymer were investigated using small-angle X-ray scattering (SAXS), optical micro scope (OM) and differential scanning calorimetry (DSC). Poly(methyl methacrylate)-block-polystyrene block copolymer (PMMA-b-PS) (weight fraction of PMMA =0.53) was mixed with low molecular weight poly(vinylidene fluoride) (PVDF). As the PVDF concentration was increased, the morphological change from a lamellar to a cylindrical structure occurred. The crystallization of PVDF significantly disturbed the orientation of the pre-existing microdomain structure, resulting in a poorly ordered morphology. In the blends, PVDF exhibited unique crystallization behavior due to the PMMA block which is preferentially miscible to PVDF and the space constraint imposed by the microdomains.

Mechanical and Thermal Properties of Epoxy/Organically Modified Mica Type Silicate (OMTS) Nanocomposites (에폭시/유기치환된 실리케이트 나노복합체의 기계적 및 열적 성질에 관한 연구)

  • 노진영;김진환
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.691-698
    • /
    • 2001
  • Nanocomposites based on epoxy acid nanoclay were prepared employing organically modified mica type silicate (OMTS), diglycidyl ether of bisphenol A (DGEBA) type epoxy. curing agent (dicyandiamide; DICY), and catalyst (benzyl dimethyl amine; BDMA). Both melt mixing and solution mixing were und for the sample preparation and structural developments with curing reaction were analyzed using X-ray diffractometer (XRD) and small angle X-ray scattering (SAXS). Because of the different curing rate between extra-gallery and intra-gallery reactions of epoxy mixtures, only intercalated structure was observed for the sample prepared by melt mixing while fully exfoliated structure was observed for the sample prepared by solution mixing. Mechanical properties of exfoliated epoxy nanocomposite were investigated using a dynamic mechanical analyzer (DMA). The dynamic storage modulus of the nanocomposite in both glass and rubbery plateau regions were increased with increasing OMTS contents, but glass transition temperatures ($T_g$) remained unchanged. Thermal properties of epoxy nanocomposite were investigated using thermogravimetric (TGA) and limit oxygen index (LOI) methods. Thermal decomposition onset points and LOI values were increased with increasing OMTS contents due to barrier effects of OMTS sheets.

  • PDF