Free Volume in polymers. Note I。 : Theoretical background

  • Consolati, G. (Dipartimento di Chimica industriale ed Ingeneria Chimica Politecnico di Milano) ;
  • Pegoraro, M. (Dipartimento di Chimica industriale ed Ingeneria Chimica Politecnico di Milano) ;
  • Zanderighi, L. (Dipartimento di Chimica Fisica ed Elettrochimica University degli Studi di Milano)
  • Published : 1999.12.01

Abstract

free volume in polymers is defined as the difference of the specific volume and the volume which is not available for the particular molecular motion which is responsible or the process that is considered . Relations between free volume and viscosity free volume and diffusion coefficient are pre-sented both in the case of simple low molecular weight liquids and in the case of polymers. Molecular models and free volume models are reminded starting from the equilibrium state equation of Simha and Somcynski. The non equilibrium situations of specific volume of glass polymers below Tg are shown introducing different relaxation volume equations which involve different material's parameters and con-cept of the fictitious temperature. The diffusivity equations of Vrentas and Duda are introduced both for the glassy and rubbery states. The possibility of introducing time relaxation functions is also suggested. The importance of finding experimental evidences of the free volume is stressed. highlights of the free volume measurement methods are given in particular as to dilatometry photocromy fluorescence electron spin resonance small angle X-ray scattering positron annihilation spectroscopy.

Keywords

References

  1. J. Appl. Phys. v.28 A.K.Doolittle;D.B.Doolittle
  2. J. Appl. Chim. v.58 A.Bondi
  3. J. Appl. Phys. v.22 A.K.Doolittle
  4. J. Appl. Phys. v.21 T.G.Fox;P.J.Flory
  5. J. Polymer Sci. v.14 T.G.Fox;P.J.Flory
  6. Rubber Chem. and Tech. v.36 R.F.Boyer
  7. J. Chem. Phys. v.37 R.Simha;R.F.Boyer
  8. J.A.C.S. v.77 M.F.Williams;A.F.Landel;J.D.Ferry
  9. Viscoelastic Properties of Polymers J.D.Ferry
  10. The Physics of high pressure P.W.Bridgman
  11. J. Chem. Phys. v.20 R.E.Hoffman
  12. J. Chem. Phys. v.31 H.M.Cohen;D.Turnbull
  13. Diffusion in Polymers H.Fujita;J.Crank;G.S.Park
  14. Trans. Far. Soc. v.56 H.Fujita;A.Kishimoto
  15. J. Polym. Sci. Polim. Ed. v.11 M.S.Suwandi;S.A.Stern
  16. J.A.C.S. v.76 P.Meares
  17. J. Polym. Sci. v.55 C.A.Kumins;J.Roteman
  18. Polymer Eng. and Sci. v.30 C.S.Wu
  19. J. Polym. Sci. v.A2 A. T. Di Benedetto;D.R.Paul
  20. J. Polym. Sci. v.C10 A. T. Di Benedetto;D.R.Paul
  21. J. Phys. Chem. v.63 W.W.Brandt
  22. J. Polym. Sci. Phys. v.17 R.I.Pace;A.Datymer
  23. J. Polym. Sci. Phys. v.18 R.I.Pace;A.Datymer
  24. J. Polym. Sci. Phys. v.17 R.I.Pace;A.Datymer
  25. Diffusion in Polymers J.Crank;G.S.Park
  26. Fortschritte Hochpolym-Forsch v.3 A.J.Kovacs
  27. Physical aging in amorphous polymers and other materials L.C.E.Struik
  28. Macromolecules v.2 R.Shmha;T.Somcynsky
  29. Macromolecules v.10 R.Shmha;T.Somcynsky
  30. Trans. Faraday Soc. v.64 B.Eichinger;P.Flory
  31. Computational modeling of Polymers J.Bicerano
  32. Macromolecules v.9 J.E.McKinney;R.Simha
  33. J. Polym. Sci. v.30 A.X.Kovacs
  34. Mechanical Properties of Solid Polymers I.M.Ward
  35. rif. 26 pg321 J. Bicerano
  36. J. Polym. Sci. Polim Ed. v.17 A.J.Kovacs;J.Aklonis
  37. J. Am. Cer. Soc. v.59 C.T.Moynihan(et al.)
  38. Macromolecules v.16 I.M.Hodge
  39. Diffusion in polymers J.Duda;J.Zelinski;P.Neogy
  40. rif, 26 pg.363 J. Bicerano
  41. J. of Memb. Science v.1 W.R.Vieth;J.M.Howell;J.H.Hsieh
  42. J. Polymer Sci. v.A2 no.7 D.R.Paul
  43. Rheology v.5 D.H.Kaelbe;F.R.Eirich(ed.)
  44. J. Chem. Phys. v.63 F.Bueche
  45. J. Rheol. v.30 no.4 M.Litt
  46. Adv. Chem. Ser. v.175 Positronium and Muonium Chemistry H.Ache(ed.)
  47. Encycolpedia of Polymer Scinece and Engineering(Ⅱ° Ed.) P.Zoller;Mark(ed.);Bikales*ed.);Overberger(ed.);Mengers(ed.)
  48. Macromolecules v.5 C.S.Paik;H.Morawetz
  49. Macromolecules v.9 D.T.L.Chen;H.Morawetz
  50. Makromol. Chem. v.179 C.D.Eisenbach
  51. Macromolecules v.20 J.G.Victor;J.M.Torkelson
  52. Macromolecules v.21 J.G.Victor;J.M.Torkelson
  53. J. Phys. Chem. v.68 A.Bondi
  54. Macromolecules v.14 R.O.Loutfy
  55. Physical properties of Polymers F.Bueche
  56. Macromolecules v.26 J.Scot,Royal;J.M.Torkelson
  57. J. Chem. Phys. v.39 J.H.Freed;G.K.Frankel
  58. J. Chem. Phys. v.49 J.H.Freed;G.K.Frankel
  59. J. Chem. Phys. v.33 D.Kivelson
  60. J. Magn. Reson. v.3 G.Poggi;C.S.Johnson
  61. J. Phys. Chem. v.79 J.S.Hwang;R.P.Mason;L.P.Hwang;J.H.Freed
  62. J. Phys. Chem. v.76 S.A.Goldman;G.V.Bruno;J.H.Freed
  63. J. Phys. Chem. v.76 S.A.Goldman;G.V.Bruno;C.F.Polnaszek;J.H.Freed
  64. Ann. Phys. v.25 M.V.Smoluchowski
  65. Proc. Acad. Sci. v.17 F.S.Omstein;F.Zernike
  66. Macromolecules v.20 H.H.Song;R.J.Roe
  67. Progr. Colloid & Polymer Sci. v.66 W.Wiegrand;W.Ruland
  68. Macromolecules v.20 H.H.Song;R.J.Roe
  69. Macromolecules v.16 R.J.Roe;J.J.Curro
  70. Prog. Colloid Polym. Sci. v.57 W.Ruland
  71. Polymer v.25 J.J.Curro;R.R.Roe
  72. J. Phys. Chem. v.80 I.Sanchez;R.Lacombe
  73. J. Phys. Chem. v.78 G.V.Bruno;J.H.Freed