• 제목/요약/키워드: small wind turbine

검색결과 258건 처리시간 0.035초

풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석 (A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine)

  • 박무열;유능수;남윤수
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

사보니우스 소형풍력터빈 수치해석용 격자시스템 평가 (Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine)

  • 김철규;이상문;전석윤;윤준용;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.547-553
    • /
    • 2016
  • This paper presents the effect of a grid system on the performance of a small Savonius wind turbine installed side-by-side. Turbine performance is compared using three different grid systems; tetrahedral grid having a concentrated circular grid around turbine rotors, the tetrahedral grid having a concentrated rectangular grid around turbine rotors and the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid. The commercial code, SC/Tetra has been used to solve the three-dimensional unsteady Reynolds-averaged Navier-Stokes analysis in the present study. The Savonius turbine rotor has a rotational diameter of 0.226m and an aspect ratio of 1.0. The distance between neighboring rotor tips keeps the same length of the rotor diameter. The variations of pressure and power coefficient are compared with respect to blade rotational angles and rotating frequencies of the turbine blade. Throughout the comparisons of three grid systems, it is noted that the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid has a stable performance compared to the other ones.

소형 풍력발전시스템의 출력성능검사 (Power performance Testing of Small Wind Turbine Generator System)

  • 김현기;김병민;유능수
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.123-128
    • /
    • 2011
  • In this study, procedures, a power performance testing system of Wind Turbine System Research Center of Kangwon National University is introduced. Test prodedures and results are presented on a stand-alone vertical-axis 200W wind turbine manufactured by Geum-Poong Energy Inc.. Power performance test is performed according to IEC standard. The test results are compared with the power performance standard. Also, the effects of normalization and disturbed sectors are considered.

  • PDF

계통연계형 직렬운전 소형풍력발전시스템의 해석 및 운전방안 연구 (The Analysis and Study on Operation Strategy of Grid-connected Series Small Wind Turbine System)

  • 김창하;구현근;손영득;김장목
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.59-64
    • /
    • 2015
  • This paper proposes an analysis and operation strategy of a grid-connected wind turbine system using a diode rectifier. The currents of generators are the same as that of a small wind turbine system. Therefore, the analysis of generator torque is required as opposed to an analysis of blade speed. In this paper, the appropriate MPPT control method is proposed to control generator torque. Usefulness of the proposed operation strategy is verified by simulations and experiments.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

도시형 소형 수직축 풍력 발전기의 형태별 성능에 대한 실험적 고찰 (Experimental study on the performance of urban small vertical wind turbine with different types)

  • 강덕훈;신원식;이장호
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.64-68
    • /
    • 2014
  • This paper is intended to provide experimental data for the design of the small VAWT(vertical axis wind turbine). Three types(lift, drag, and hybrid) of the blade of VAWT are tested with digital wind tunnel in this study. From the test, the relation of power coefficient and tip speed ratio for the blades are evaluated and compared each other depending on the blade type. Especially, the characteristics of hybrid blade which is shown to be expanded in the market without any logical data is proposed in the relation of power coefficient and tip speed ratio. It is shown that the hybrid blade can be used to make higher starting torque with trade off of degradation of power coefficient.

호남광역경제권의 서남해안 풍력산업 특성 (The Characteristic of Wind Turbine Industry of the West-South Seashore of Leading Industry Development for Honam Economic Region)

  • 차인수;김태형;이기봉
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.101-102
    • /
    • 2010
  • This paper represents about the characteristics of wind turbine industry of the west-south seashore of Leading Industry Development for Honam Economic Region. These projects have 8 R&D and 3 non R&D project. The period of these projects is from October 2009 to April 2012. The R&D projects are composed three bright prospect products (1) the base construction of MW off-shore wind turbine components and system with Outer-rotor type PMSG, (2) the Development of 3MW wind power system with accommodation of the west-south seashore, and (3) the development of hybrid wind turbine system with wind base construction. Also, the non-R&D projects are composed three parts with above three bright prospect products. Above two projects support the companies with characteristic of low speed wind turbine system. Other project supports the companies related to wind turbine with small and medium capacity of form 3 kW to 10kW.

  • PDF

풍력 블레이드 적용을 위한 고유익형 KA2의 공력특성 (Aerodynamic Characteristics of the Original Airfoil KA2 for the Application of Wind Turbine Blade)

  • 우영진;강덕훈;이장호
    • 풍력에너지저널
    • /
    • 제5권1호
    • /
    • pp.33-42
    • /
    • 2014
  • The new aerofoil, KA2 was designed to apply to the wind turbine blade. For the aerofoil, numerical analysis was performed to review aerodynamic characteristics like lift and drag coefficient. And they are verified with test data using the digital wind tunnel and test samples from 3D printer. The digital wind tunnel was developed to test wing in the small laboratory, and verified with test of NACA0012 airfoil. KA2 aerofoil is asymmetric, and has the thickness ratio of 14%, and 12 degree of AOA at the maximum lift coefficient of 1.3. In this paper, aerodynamic characteristics from numerical and test approaches will be proposed with AOA in detail. Therefore, this aerofoil will be used for the design of wind turbine blade.

50kW 풍력발전기의 출력 성능에 관한 연구 (A study of Power Performance for 50kW Wind Turbine)

  • 김형길;공정식;권기진;오진훈;문채주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1068-1069
    • /
    • 2015
  • Wind turbines have an enormous potential for decentralized electricity generation. In recent years, there has been an increasing worldwide interest in small/medium wind systems. This paper presents the results of power performance testing conducted on a 50 kW turbine located in Yeonggwang test-bed. The turbine system is a pitch, active yaw, variable speed, upwind, three blade with a direct drive PMSG. This thesis covers the operation of variable speed wind turbines with pitch-yaw control. The system considered is controlled to generate maximum energy while minimizing loads. The data include power, wind speed, and direction from meteorological towers, and nacelle anemometer readings and output from turbine. The analysis concentrates on the effect of the load on the power-wind speed curve of the turbine.

  • PDF