• Title/Summary/Keyword: small wind power

Search Result 328, Processing Time 0.03 seconds

A New Control Scheme of Wind Farm Considering P,Q References (풍력 발전단지의 출력 지령값을 고려한 계통 연계 운영 방안)

  • Choi, Jung-Hyun;Park, Jin-Woo;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1172-1173
    • /
    • 2008
  • At the moment, the control ability of wind farms is a prime research concern for the grid integration of large wind farms, due to their required active role in the power system. As more wind turbines are installed, the power from wind energy will start to replace conventional generation units and its influence on power systems cannot be neglected. Besides, because of the intermittent nature of wind the output power of wind turbines fluctuates according to wind speed variation. Especially an isolated power system with small capacity such like Jeju needs more systematic solutions and regulations(grid code). This paper presents the idea of approach for centralized operating wind farm strategy to regulate the wind farm power production to the reference power ordered by the system operator. The doubly fed induction generator(DFIG) can control active and reactive power in feasible range. So wind farm comprised of DFIG has the possibility of a controllable component in the power system. The presented wind farm control has a hierarchical structure with both a wind farm control level and a wind turbine control level.

  • PDF

Development of the Furling Control Type Small Wind Turbine System (과풍속 출력 제한형 소형 풍력 발전장치 개발)

  • Choi, Young-Chul;Kim, Chul-Ho;Lee, Hyun-Chae;Seo, Young-Taek;Han, Young-Oun;Song, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.693-701
    • /
    • 2012
  • In this study, a small wind turbine airfoil specialized for national wind condition was designed in order to develop the furling control type HAWT. And then a flow analysis was carried out based on the blade drawing which was designed to characterize of the developed airfoil. The result of the flow analysis showed that the torque on the 3 blades was 180.23N.m. This is equivalent to an output power of 5.66kw and an output efficiency of 0.44. Then we produced and constructed a 3kW - furling control type HAWT by getting the system unit design technology such as the specialized furling control device. By operating this turbine, we could get 3kW of the rated power at a wind speed of 10.5m/s through the ability test. Cut-in wind speed was 2m/s, generator efficiency was 92% at the rated power output. Sound power level was 87.2dB(A). Also we observed that the output power was limited to 10.5m/s with furling system operation.

Power Network's Operation Influence Analysis of Wind Power Plant in Jeju island (제주지역 풍력발전기에 의한 전력계통운영 영향분석)

  • Kim, Young-Hwan;Choi, Byung-Chun;Jang, Si-Ho;Kim, Se-Ho;Jwa, Jong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.127-129
    • /
    • 2005
  • Construction of wind power plant is increasing rapidly because Jeju island is known as the most suitable place for wind power plant. Rut wind power plant is difficult electric power control and it has a rapid electric power fluctuation. Such a problem has a bad influence on electric power network in small electric network like Jeju. Therefore, we forecast the amount of wind power plant construction by weather information and the rate of utilization for existing facility. We investigate the contribution degree for electric Power demand, economic effect, the case of power network influence. So we forecast influence of wind power plant for Jeju power network's operation in the near future.

  • PDF

A Study on the realrization of Low Wind Generation (저 풍속 발전 시스템 구현에 관한 연구)

  • Ji, Myoung-Kuk;Kong, Tae-Woo;Bae, Chul-Whan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.891-896
    • /
    • 2001
  • The recent technology of Wind Power Generation in the world is rapidly developed better than the past time. The extra-large wind power generation system of the MW-class and the large wind power generation system of the hundreds kW-class were developed and became for common use. So, this paper is basic experiment for wind power generation at low wind, and aimed for small wind power generation system.

  • PDF

Flexible Transmission Expansion Planning for Integrating Wind Power Based on Wind Power Distribution Characteristics

  • Wang, Jianxue;Wang, Ruogu;Zeng, Pingliang;You, Shutang;Li, Yunhao;Zhang, Yao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.709-718
    • /
    • 2015
  • Traditional transmission planning usually caters for rated wind power output. Due to the low occurrence probability of nominal capacity of wind power and huge investment in transmission, these planning methods will leads to low utilization rates of transmission lines and poor economic efficiency. This paper provides a novel transmission expansion planning method for integrating large-scale wind power. The wind power distribution characteristics of large-scale wind power output and its impact on transmission planning are analyzed. Based on the wind power distribution characteristics, this paper proposes a flexible and economic transmission planning model which saves substantial transmission investment through spilling a small amount of peak output of wind power. A methodology based on Benders decomposition is used to solve the model. The applicability and effectiveness of the model and algorithm are verified through a numerical case.

Design and Performance Analysis of Coreless Axial-Flux Permanent-Magnet Generator for Small Wind Turbines

  • Chung, Dae-Won;You, Yong-Min
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.273-281
    • /
    • 2014
  • This paper presents an innovative design for a low-speed, direct-drive, axial-flux permanent-magnet (AFPM) generator with a coreless stator and rotor that is intended for application to small wind turbine power generation systems. The performance of the generator is evaluated and optimized by means of comprehensive 3D electromagnetic finite element analysis. The main focus of this study is to improve the power output and efficiency of wind power generation by investigating the electromagnetic and structural features of a coreless AFPM generator. The design is validated by comparing the performance achieved with a prototype. The results of our comparison demonstrate that the proposed generator has a number of advantages such as a simpler structure, higher efficiency over a wide range of operating speeds, higher energy yield, lighter weight and better power utilization than conventional machines. It would be possible to manufacture low-cost, axial-flux permanent-magnet generators by further developing the proposed design.

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

Experimental and Numerical Studies on the Possibility of Duct Flow Low-power Generation Using a Butterfly Wind Turbine

  • Hara, Yutaka;Kogo, Shohei;Takagaki, Katsuhiro;Kawanishi, Makoto;Sumi, Takahiro;Yoshida, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.19-29
    • /
    • 2017
  • An objective of this study is to demonstrate the validity of using a small wind turbine to recover the fluid energy flowing out of an exhaust duct for the generation of power. In these experiments, a butterfly wind turbine of a vertical axis type (D = 0.4 m) is used. The output performance is measured at various locations relative to the exit of a small wind tunnel (W = 0.65 m), representing the performance expected in an exhaust duct flow. Two-dimensional numerical analysis qualitatively agrees with the experimental results for the wind turbine power coefficient and rate of energy recovery. When the turbine is far from the duct exit (more than 2.5 D), an energy recovery rate of approximately 1.3% is obtained.

The MPPT Control of a Small Wind Power Generation System by Adjusting the DC-Link Voltage of a Grid-connected Inverter (계통 연계형 인버터의 DC-Link 전압 가변을 통한 소형 풍력발전 시스템의 MPPT 제어)

  • Park, Min-Gi;Lee, Joon-Min;Hong, Ju-Hoon;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1402-1411
    • /
    • 2014
  • In this paper, the Maximum Power Point Tracking(MPPT) control of the small scale wind power generation system with a three-phase diode rectifier and the grid-connected inverter is studied. Without the need for the converter circuits to control speed of the generator, it is economical and the structure is simple. Compared with existing systems, it can be to reduce the power semiconductor switches and passive elements, and to implement the MPPT control with only DC-Link voltage control of the grid-connected inverter. In order to allow MPPT control without the characteristic information of the wind turbine, the P&O algorithm is applied, and these are verified by the simulation and experiment.

Vibration Monitoring and Analysis of a Small Stand Alone Wind Turbine Generator (소형 독립형 풍력발전기의 진동 모니터링 및 분석)

  • Kim S. H.;Yoo N. S.;Nam Y. S.;Lee J. W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.64-67
    • /
    • 2005
  • A vibration monitoring system for a small size wind turbine (WIT) is established and operated. The monitoring system consists of monolithic integrated chip accelerometer for vibration monitoring, anemometers for wind data acquisition and auxiliary sensors for atmospheric data. Using the monitoring system, vibration response of a 6kW stand alone WIT generator is investigated. Acceleration data of the WIT tower under various operation condition is acquired in real time using LabVIEW and the data are remotely transferred from the test site to the laboratory in school by internet. Vibration response characteristics of the tower structure are diagnosed in the aspect of stability of W/T. Wind data and electrical power performance are also investigated with the stability problem.

  • PDF