• Title/Summary/Keyword: small square timber

Search Result 5, Processing Time 0.021 seconds

Lateral Resistance of CLT Wall Panels Composed of Square Timber Larch Core and Plywood Cross Bands

  • JANG, Sang Sik;LEE, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.547-556
    • /
    • 2019
  • Thinned, small larch logs have small diameters and no value-added final use, except as wood chips, pallets, or fuel wood, which are products with very low economic value; however, their mechanical strength is suitable for structural applications. In this study, small larch logs were sawed, dried, and cut into square timbers (with a $90mm{\times}90mm$ cross section) that were laterally glued to form core panels used to manufacture cross-laminated timber (CLT) wall panels. The surface and back of these core panels were covered with 12-mm-thick structural plywood panels, used as cross bands to obtain three-ply CLT wall panels. This attachment procedure was conducted in two different ways: gluing and pressing (CGCLT) or gluing and nailing (NGCLT). The size of the as-manufactured CLT panels was $1,220mm{\times}2,440mm$, the same as that of the plywood panels. The final wall panels were tested under lateral shear force in accordance with KS F 2154. As the lateral load resistance test required $2,440mm{\times}2,440mm$ specimens, two CLT wall panels had to be attached in parallel. In addition, the final CLT panels had tongued and grooved edges to allow parallel joints between adjacent pieces. For comparison, conventional light-frame timber shear walls and midply wall systems were also tested under the same conditions. Shear walls with edge nail spacing of 150 mm and 100 mm, the midply wall system, and the fabricated CGCLT and NGCLT wall panels exhibited maximum lateral resistances of 6.1 kN/m (100%), 9.7 kN/m (158%), 16.9 kN/m (274%), 29.6 kN/m (482%), and 35.8 kN/m (582%), respectively.

Sound Absorption Rate and Sound Transmission Loss of CLT Wall Panels Composed of Larch Square Timber Core and Plywood Cross Band

  • Kang, Chun Won;Jang, Sang Sik;Kang, Ho Yang;Li, Chengyuan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • The square timbers of larch having cross section of $90mm{\times}90mm$ were glued laterally to be formed $1,200mm{\times}2,400mm$ panels which were used as cores for CLT wall panels. Then, structural plywood panels having size of $1,200mm{\times}2,400mm$ were used as cross band covering the small square timber cores to manufacture CLT wall panels. The sound absorption rate of CLT wall panels and polyester board attached CLT wall panels were investigated. The mean sound absorption coefficients of the former and the latter in the frequency range of 100-6400 Hz were 0.21 and 0.74, respectively. The noise reduction coefficients (NRC) of those were 0.21 and 0.40, respectively. Also, the mean sound transmission loss of CLT wood panel in the frequency range of 50-1600 Hz was 45.12 dB and that value at the frequency of 500 Hz was 42.49 dB. It was suggested that the polyester board attached CLT wall panels could be used as housing wall because of its high sound absorption rate and high sound transmission loss.

A Study on Sawing and Utilization Structure of Lumber from Small - diameter Logs of Larix leptolepis (낙엽송 소경재(小徑材)의 제재이용구조(製材利用構造)에 관(關)한 연구(硏究))

  • Lee, Choon-Taek;Kim, Su-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.53-68
    • /
    • 1990
  • This research has been executed for maximization of lumber yield and more efficient use of small diameter logs. Sample logs from thinnings carne from densed artificial stands at the Kwangnung Experimental Forests situated in the central region of Korean peninsula. Species of sample logs were obtained to execute sawing and strength test for larch, and lumber strength test in full size for pitch pine and Korean pine. A survey on sawmills consuming domestic logs was carried out to know sawmill production, costs and utilization structure of lumber as a guide to business analysis. Results showed that sawing pattern from small logs less than 15cm in diameter was necessary to cut 9cm by 9cm square per one log in order to obtain high lumber recovery and provide for wide market needs. The total lumber yield of squares plus side boards was 56 percent to 58 percent from small logs and the yield for log sweep in 30 percent decreased by 24.5 percent in sawing production, compared to yield for straight logs. In sawing efficiency, production of lumber by twin band saw could be improved 238 percent higher than lumber of the same species produced by conventional sawmilling methods, and sawing accuracy with twin band saw was much higher at the lumber production than band saw. Lumber from the small larch logs has shown 70 knots per $m^2$ on its faces and also lumber showed lots of face checkings by air drying on the yard, compared to other species. MOR in bending of lumber in full size from small logs of larch was found ranging from 380kg/$cm^2$ to 460kg/$cm^2$, resulting in 40 percent less than the strength from clear small specimens. In lumber containing knots, cross grain, etc, longitudinal stress wave speed was delayed about 48 percent by defects in lumber from both larch and pitch pine logs. The surveyed sample sawmills consumed the domestic logs at the rate of 54 percent to 84 percent in the total timber consumption, showing high consumption at mills located in the mountains.

  • PDF

Distribution Characteristics of Bending Properties for Visual Graded Lumber of Japanese Larch (육안등급으로 구분된 낙엽송 제재목의 휨성능 분포 특성)

  • Lee, Jun Jae;Kim, Gwang Chul;Kim, Kwang Mo;Oh, Jung Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • In reliability based design(RBD) method, the distribution characteristics of mechanical properties of material are basic input variable. Therefore, distribution type and parameters of mechanical properties should be determined accurately. Until now, the properties were derived from tests with small, clear specimens. However, the test conditions should emulate as nearly as possible the way in which the timber would be used in practice and the test results should, as closely as possible, reflect the structural end use conditions to which the timber products would be subjected. In this study, structural timbers (38mm by 140mm, 3.0m long) were graded by visual assessment of growth characteristics and defects. And then bending tests were conducted on 498 structural size timbers. For each grade, the distribution type and the parameters of mechanical properties were determined for each grade. For the determination of best-fit distribution type, comparing of square error between distribution types and KS test were conducted. Best-fit distribution type of bending strength(MOR) is weibull distribution for all grade. In case of MOE, normal distribution is best-fit.

Effects of Finger-joint on Bending Performance of Square Timbers Produced from Domestic Small Diameter Larch Logs (핑거조인트가 국산 낙엽송 소경각재의 휨성능에 미치는 영향)

  • Kim, Yun-Hui;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.301-308
    • /
    • 2014
  • Despite Korea forest take 63.7% of the nation's territory, productivity of domestic structural lumber is low. Studies of domestic small lumbers need to be improved domestic structural timber productivity. In this study, small diameter lumber and finger joint small diameter lumber took bending test to calculate MOE and MOR. MOE of small diameter lumber was $9.3kN/mm^2$ and MOE of finger joint small diameter lumber was $15.4kN/mm^2$. Allowable standard bending stress of small diameter lumber and finger joint small diameter lumber was calculated according to ASTM D 2915. Standard allowable bending stress of small diameter lumber was $12N/mm^2$ and standard allowable bending stress of finger joint small diameter lumber was $11N/mm^2$. Standard allowable bending stress of finger joint small diameter lumber should be considered to design structural beam members.