• Title/Summary/Keyword: small signal gain

Search Result 212, Processing Time 0.031 seconds

Low Noise and High Linearity GaAs LNA MMIC with Novel Active Bias Circuit for LTE Applications

  • Ryu, Keun-Kwan;Kim, Yong-Hwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.112-116
    • /
    • 2017
  • In this work, we demonstrated a low noise and high linearity low noise amplifier (LNA) monolithic microwave integrated circuit (MMIC) with novel active bias circuit for LTE applications. The device technology used in this work relies on a process involving a $0.25-{\mu}m$ GaAs pseudomorphic high electron mobility transistor (PHEMT). The LNA MMIC with a novel active bias circuit has a small signal gain of $19.7{\pm}1.5dB$ and output third order intercept point (OIP3) of 38-39 dBm in the frequency range 1.75-2.65 GHz. The noise figure (NF) is less than 0.58 dB over the full bandwidth. Compared with the characteristics of the LNA MMIC without using the novel active bias circuit, the OIP3 is improved about 2-3 dBm. The small signal gain and NF showed no significant change after using the active bias circuit. The novel active bias circuit indeed improves the linearity performance of the LNA MMIC without degradation.

Design of 14.0-14.5 GHz 3Watt SSPA for VSAT Applications (VSAT용 14.0-14.5 GHz 3와트 SSPA의 설계 및 제작연구)

  • 전광일;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.920-927
    • /
    • 1994
  • A development of an efficient 14.0~14.5GHz 3 Watt SSPA is described in this paper, which is applicable to the very small aperture terminal(VSAT) for bidirectional data and voice signal transmission in low cost and with small size. The SSPA consists of two stages of low noise amplifiers using the low noise GaAs FETs. two stages of medium power amplifiers using the medium power GaAs FETs, and three stages of power amplifiers including a balanced amplifier using an internally matched power GaAs FET. The achieved with this seven stage amplifiers are 42dB signal power gain, 7dB noise figure, 35dBm output power at 1dB gain compression point and 2.0 and 1.5 input and output VSWR respectively.

  • PDF

Design of A 3V CMOS Lowpass Filter Using the Improved Continuous-Time Fully-Differential Current-Mode Integrator (개선된 연속시간 Fully-Differential 전류모드 적분기를 이용한 3V CMOS 저역필터 설계)

  • 최규훈;방준호;조성익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.685-695
    • /
    • 1997
  • In this paper, a new CMOS continuous-time fully-differential current-mode integrator is proposed as a basic building block of the low-voltage high frequency current-mode active filter. The proposed integrator is composed of the CMOS complementary circuit which can extend transconductance of an integrator. Therefore, the unity gain frequency which is determined by a small-signal transconductance and a MOSFET gate capacitance can be expanded by the complementary transconductance of the proposed integrator. And also the magnitude of pole and zero are increased. The unity gain frequency of the proposed integrator is increased about two times larger than that of the conventional continuous-time fully-differential integrator with NMOS-gm. These results are verified by the small signal analysis and the SPICE simulation. As an application circuit of the proposed fully-differential current-mode integrator, the three-pole Chebyshev lowpass filter is designed using 0.8.$\mu$m CMOS processing parameters. SPICE simulation predicts a 3-dB bandwidth of 148MHz and power dissipation of 4.3mW/pole for the three-pole filter with 3-V power supply.

  • PDF

Fabrication of low Noise Erbium-Doped Fiber Amplifier and Optical Preamplification Experiment (저 잡음 에르븀 첨가 광섬유 증폭기의 제작 및 광전차 증폭 실험)

  • 이상수;한정희;윤태열;이창희;심창섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.70-77
    • /
    • 1994
  • A low noise erbium doped fiber amplifier for optical preamplification has been demonstrated. The amplifier incoporates an optical isolator in its midway to prevent decrease of population inversion at the input port due to backward traveling amplified spontaneous emission. Then, high gain and low noise can be achieved simultaneously. A small signal gain of 34dB and a noise figure of 5.5dB have been achieved. With this amplifier, we obtained a receiver sensitivity of -39.7dBm with back to back configuration and -39.3dBm with 47km normal fiber for 10$^{-9}$BER at 2.5Gbps direct modulated optical signal.

  • PDF

Gain-Clamped L-Band EDFA Incorporating An Inline Fiber Bragg Grating

  • Harun, Sulaiman-Wadi;Nizam Tamchek;Harith Ahmad
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.531-532
    • /
    • 2002
  • This paper present a gain-clamped L-band EDFA based on reflecting back a portion of backward amplified spontaneous emission into the erbium-doped fiber section, utilizing a fiber Bra99 grating. By using FBG with R=66.1 and 99.9%, the gain is clamped at 15.1 and 14.3㏈, respectively, with a variation of less than 0.2㏈ for an input signal power as high as -5 ㏈m. However, a small noise figure penalty is obtained, which is the consequence of the gain clamping effect.

  • PDF

E-band low-noise amplifier MMIC with impedance-controllable filter using SiGe 130-nm BiCMOS technology

  • Chang, Woojin;Lee, Jong-Min;Kim, Seong-Il;Lee, Sang-Heung;Kang, Dong Min
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.781-789
    • /
    • 2020
  • In this study, an E-band low-noise amplifier (LNA) monolithic microwave integrated circuit (MMIC) has been designed using silicon-germanium 130-nm bipolar complementary metal-oxide-semiconductor technology to suppress unwanted signal gain outside operating frequencies and improve the signal gain and noise figures at operating frequencies. The proposed impedance-controllable filter has series (Rs) and parallel (Rp) resistors instead of a conventional inductor-capacitor (L-C) filter without any resistor in an interstage matching circuit. Using the impedance-controllable filter instead of the conventional L-C filter, the unwanted high signal gains of the designed E-band LNA at frequencies of 54 GHz to 57 GHz are suppressed by 8 dB to 12 dB from 24 dB to 26 dB to 12 dB to 18 dB. The small-signal gain S21 at the operating frequencies of 70 GHz to 95 GHz are only decreased by 1.4 dB to 2.4 dB from 21.6 dB to 25.4 dB to 19.2 dB to 24.0 dB. The fabricated E-band LNA MMIC with the proposed filter has a measured S21 of 16 dB to 21 dB, input matching (S11) of -14 dB to -5 dB, and output matching (S22) of -19 dB to -4 dB at E-band operating frequencies of 70 GHz to 95 GHz.

On the Mismatch Phenomena in DPCM Coding of Speech (DPCM 음성 부호화기의 부정합현상에 관한 연구)

  • Yoo, Deuk Su;Cho, Dong Ho;Un, Chong Kwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.597-604
    • /
    • 1986
  • This paper describes various mismatch phenomena in differential pulse code modulation (DPCM) coding, such as the mismatch effects of probability density functin(pdf), signal variance, and correlation. At a high transmission rate(i.e., above 32 kbits/s), the performance of DPCM can be improved by matching the pdf shape between the input signal and the quantizer. However, the same gain cannot be obtained at a lower transmission rate. Also, it is shown that the gamma quantizer is realtively robust to the variation of pdf shaper and signal variance. Moreover, as the transmission rate increases, the performance of DPCM for the input signal with large variance is worse than that of DPCM for the signal with small variance due to the increase of overload noise. According to our simuladiton results, the mismatch effects of pdf shape and variance appear to yield more degradatin than that of correlation in a DPCM system.

  • PDF

Design of active power factor control AC/DC converter having current control loop with no compensator (전류 제어 루프에 보상을 행하지 않는 능동 역률 제어 AC/DC 컴버터의 제어기 설계)

  • 이인호;김성환;유지윤;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.216-223
    • /
    • 1996
  • The active power factor control AC/DC converter needs a current loop compensator to obtain better dynamic characteristics and power factor performance, but the optimal design of a current loop compensator is difficult because the AC/DC converter is a nonlinear system having periodically varying poles and zeros. The predictive current control scheme generates a control input using the dynamic equations of the AC/DC converter so that the dynamic of the AC/DC converter is included in the controller and the necessary bandwidth and the gain characteristics of the current control loop are satisfied. And as a result, a compensator becomes unnecessary and the current loop shows the improved current loop characteristics. In this paper, a power factor controller without current loop compensator by adopting a predictive current control scheme is designed and the designed power factor controller is modelled by using a small signal perturbation modelling technique, and simulated to investigate its small signal characteristics. A 200 W power factor control AC/DC converter is built to verify the effectiveness of the proposed power factor controller.

  • PDF

Modeling and Design of Average Current Mode Control (평균전류모드제어를 이용하는 컨버터의 모델링 및 설계)

  • Jung Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.347-355
    • /
    • 2005
  • In this paper, a new continuous~time small signal model of an average current mode control is proposed. Sampling effect Is considered to obtain the proposed small signal model. By the proposed model, the high frequency response characteristics of current loop gain might be predicted accurately compared to previous models. And this leads the prediction of inductor current response of the proposed model to be accurate compared to others. In order to show the usefulness of the proposed model, prediction results of the proposed model are compared to those of the circuit level simulator, PSIM and experiment.

Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer (Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법)

  • Choi, Hyun-Jun;Lee, Won-Bin;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.