• Title/Summary/Keyword: small river watersheds

Search Result 51, Processing Time 0.023 seconds

Application of Flood Discharge for Gumgang Watershed Using GIS-based K-DRUM (GIS기반 K-DRUM을 이용한 금강권 대유역 홍수유출 적용)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2010
  • The distributed rainfall-runoff model which is developed in the country requires a lot of time and effort to generate input data. Also, it takes a lot of time to calculate discharge by numerical analysis based on kinematic wave theory in runoff process. Therefore, most river basins using the distributed model are of limited scale, such as small river basins. However, recently, the necessity of integrated watershed management has been increasing due to change of watershed management concept and discharge calculation of whole river basin, including upstream and downstream of dam. Thus, in this study, the feasibility of the GIS based physical distributed rainfall-runoff model, K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model) which has been developed by own technology was reviewed in the flood discharge process for the Geum River basin, including Yongdam and Daecheong Dam Watersheds. GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of the model. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions. The accuracy of discharge analysis for application of the method was evaluated using VER, QER and Total Error in case of the typhoon 'Ewiniar' event. and the calculation results shows a good agreement with observed data.

Estimates of Regional Flood Frequency in Korea (우리나라의 빈도홍수량의 추정)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1019-1032
    • /
    • 2004
  • Flood frequency estimate is an essential index for determining the scale of small and middle hydraulic structure. However, this flood quantity could not be estimated directly for practical design purpose due to the lack of available flood data, and indirect method like design rainfall-runoff method have been used for the estimation of design flood. To give the good explain for design flood estimates, regional flood frequency analysis was performed by flood index method in this study. First, annual maximum series were constructed by using the collected data which covers from Japanese imperialism period to 1999. Wakeby distribution recommended by WMO(1989) was used for regional flood frequency analysis and L-moment method by Hosking (1990) was used for parameter estimation. For the homogeneity of region, the discordance and heterogeneity test by Hosking and Wallis(1993) was carried for 4 major watersheds in Korea. Physical independent variable correlated with index flood was watershed area. The relationship between specific discharge and watershed area showed a type of power function, i.e. the specific discharge decreases as watershed area increases. So flood quantity according to watershed area and return period was presented for each watershed(Han rivet, Nakdong river, Geum river and Youngsan/Seomjin river) by using this relation type. This result was also compared with the result of point frequency analysis and its regionalization. It was shown that the dam construction couldn't largely affect the variation of peak flood. The property of this study was also examined by comparison with previous studies.

Assessing Sustained Drought Impacts on the Han River Basin Water Supply System Using Stochastic Streamflows (추계학적 모의유량을 이용한 한강수계 용수공급시스템의 장기지속가뭄 영향 평가)

  • Cha, Hyeung-Sun;Lee, Gwang-Man;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.481-493
    • /
    • 2012
  • The Uncertainty of drought events can be regarded as supernatural phenomena so that the uncertainty of water supply system will be also uncontrollable. Decision making for water supply system operation must be dealt with in consideration of hydrologic uncertainty conditions. When ultimate small quantity of precipitation or streamflow lasts, water supply system might be impacted as well as stream pollution, aqua- ecosystem degradation, reservoir dry-up and river aesthetic waste etc. In case of being incapable of supplying water owing to continuation of severe drought, it can make the damage very serious beyond our prediction. This study analyzes comprehensively sustained drought impacts on the Han River Basin Water Supply System. Drought scenarios consisted of several sustained times and return periods for 5 sub-watersheds are generated using a stochastic hydrologic time series model. The developed drought scenarios are applied to assess water supply performance at the Paldang Dam. The results show that multi-year drought events reflecting spatial hydrologic diversity need to be examined in order to recognize variation of the unexpected drought impacts.

Parameter Determination of Rainfall Runoff Model by Storage Function Model (저유함수법에 의한 강우-유출모형의 변수추정)

  • 남궁달
    • Water for future
    • /
    • v.18 no.2
    • /
    • pp.175-185
    • /
    • 1985
  • This paper discusses the posibility of synthesizing flood hudrographs by the stroage function model. Eight small watersheds from Han, Gum, Nakdong, Youngsan river system were selected for this purpose. The optimum constants are computed from the chi square criterion by the SDFP methods Based on these constants, equations for the storage constant and Lag time are derived from the kinematic wave theory and storage function theory. These relations are examined by using optimum constants of the storage function model and assumptive constant of the kinematic wave model. Main results are sumarized as follows. 1. Constants of the storage function model are closely related to those of the kinematic wave model. The formula obtained theoretically is difficult to use practically because of the unclaified definition of factors. 2. In order to estimate constants of the storage function model for the practical purpose, new equations are also proposed for mountaneous area. 3. The verification of proposed equation is made for several recorded floods for mountaeous areas.

  • PDF

Application Analysis of HSPF Model Considering Watershed Scale in Hwang River Basin (황강유역에서의 유역규모를 고려한 HSPF 모형의 적용성 평가)

  • Choi, Hyun Gu;Han, Kun Yeun;Hwangbo, Hyun;Cho, Wan Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.509-521
    • /
    • 2011
  • The purpose of this study is to estimate overall reliability and applicability of the watershed modeling for systematic management of point and non-point sources via water quality analysis and prediction of runoff discharge within watershed. Recently, runoff characteristics and pollutant characteristics have been changing in watershed by anomaly climate and urbanization. In this study, the effects of watershed scale were analyzed in runoff and water quality modeling using HSPF. In case of correlation coefficient, its range was from 0.936 to 0.984 in case A(divided - 2 small watersheds). On the other hand, its range was form 0.840 to 0.899 in case B(united - 1 watershed). In case of Nash-Sutcliffe coefficient, its range was from 0.718 to 0.966 in case A. On the other hand, its range was from 0.441 to 0.683 in case B. As a result, it was judged that case A was more accurate than case B. Therefore, runoff and water quality modeling in minimum watershed scale that was provided data for calibration and verification was judged to be favorable in accuracy. If optimal watershed dividing and parameter optimization using PEST in HSPF with more reliable measured data are carried out, more accurate runoff and water quality modeling will be performed.

Study on SCS CN Estimation and Flood Flow Characteristics According to the Classification Criteria of Hydrologic Soil Groups (수문학적 토양군의 분류기준에 따른 SCS CN 및 유출변화특성에 관한 연구)

  • Ahn, Seung-Seop;Park, Ro-Sam;Ko, Soo-Hyun;Song, In-Ryeol
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.775-784
    • /
    • 2006
  • In this study, CN value was estimated by using detailed soil map and land cover characteristic against upper basin of Kumho watermark located on the upper basin of Kumho river and the hydrologic morphological characteristic factors were extracted from the basin by using the DEM document. Also the runoff analysis was conducted by the WMS model in order to study how the assumed CN value affects the runoff characteristic. First of all, as a result of studying the soil type in this study area, mostly D type soil was Identified by the application of the 1987 classification criteria. However, by that in 1995, B type soil and C type soil were distributed more widely in that area. When CN value was classified by the 1995 classification criteria, it was estimated lower than in 1987, as a result of comparing the estimated CNs by those standars. Also it was assumed that CN value was underestimated when the plan for Geum-ho river maintenance was drawn up. As a result of the analysis of runoff characteristic, the pattern of generation of the classification criteria of soil groups appeared to be similar, but in the case of the application of the classification criteria in 1995, the peak rate of runoff was found to be smaller on the whole than in the case of the application of the classification criteria in 1987. Also when the statistical data such as the prediction errors, the mean squared errors, the coefficient of determination and other data emerging from the analysis, was looked over in total, it seemed appropriate to apply the 1995 classification criteria when hydrological soil classification group was applied. As the result of this study, however, the difference of the result of the statistical dat was somewhat small. In future study, it is necessary to follow up evidence about soil application On many more watersheds and in heavy rain.

Analysis of the Direct Runoff by Using the Geomorpologic Parameters of Watersheds (유역(流域)의 지상인자(地上因子)를 이용(利用)한 홍수량(洪水量) 해석(解析))

  • Suh, Seung Duk;Lee, Seung Yook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.55-66
    • /
    • 1989
  • The purpose of this study is to estimate the flood discharge and peak time by the SCS method and the probability method using the geomorpologic parameters obtained from the topographic maps following the law of stream classifying and, ordering by Horton and Strahler. The SCS method and the probability method are used in estimating the times to peak and the flood discharges at An-dong, Im-ha, and Sun-san basins in the Nakdong River system. The results obtained are as follows : 1. The range of the values of the area ratio, the bifurcation ratio and the length ratio agree with those of natural streams presented by Horton and Strahler. 2. Comparisons of the probability method and observed values show that small relative errors of 0-7% of flood discharge, and 0-2hr, difference in time to peak respectivly. But the SCS method shows that large relative errors of 10-40% of flood discharge, and 0-4hr, difference in time to peak. 3. When the rainfall intensity is large, the error of flood discharge estimated by using the probability method is relativly small.

  • PDF

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

The Application and Analysis of Scale Effect on Dynamic Flood Frequency Analysis (동역학적 홍수빈도 모형의 적용 및 해상도 영향 분석)

  • Mun, Jang-Won;Yu, Cheol-Sang;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2001
  • A dynamic flood frequency analysis model was proposed for the frequency analysis in ungaged catchment and applied to 6 subbasins in Pyungchang River basin. As the dynamic flood frequency model requires precipitation, rainfall loss system, and runoff analysis, we adopt the rectangular pulse model, the SCS formula, and the geomorphoclimatic IUH(GcIUH) for the application. Input data for the analysis was borrowed from the results of the statistical flood frequency analysis using L-moment method for the same catchment, and then the return period was estimated using the model. This result was also compared with the return period estimated from the statistical analysis. By comparing with the results from two cases, we found the dynamic flood frequency analysis gave higher estimates than those from statistical analysis for the whole subbasins. However, the dynamic flood frequency analysis model has a potential to be used for determining the design flood for small hydraulic structure in ungaged catchment because it uses only physical parameters for flood frequency analysis. And this model can be easily applicable to other watersheds as the scale effect is negligible.

  • PDF

Future Inundation Risk Evaluation of Farmland in the Moohan Stream Watershed Based on CMIP5 and CMIP6 GCMs (CMIP5 및 CMIP6 GCM 기반 무한천 유역 농경지 미래 침수 위험도 분석)

  • Jun, Sang Min;Hwang, Soonho;Kim, Jihye;Kwak, Jihye;Kim, Kyeung;Lee, Hyun Ji;Kim, Seokhyeon;Cho, Jaepil;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.131-142
    • /
    • 2020
  • The objective of this study was to evaluate future inundation risk of farmland according to the application of coupled model intercomparison project phase 5 (CMIP5) and coupled model intercomparison project phase 6 (CMIP6). In this study, future weather data based on CMIP5 and CMIP6 general circulation model (GCM) were collected, and inundation was simulated using the river modeling system for small agricultural watershed (RMS) and GATE2018 in the Tanjung district of the Moohan stream watershed. Although the average probable rainfall of CMIP5 and CMIP6 did not show significant differences as a result of calculating the probability rainfall, the difference between the minimum and maximum values was significantly larger in CMIP6. The results of the flood discharge calculation and the inundation risk assessment showed similar to trends to those of probability rainfall calculations. The risk of inundation in the future period was found to increase in all sub-watersheds, and the risk of inundation has been analyzed to increase significantly, especially if CMIP6 data are used. Therefore, it is necessary to consider climate change effects by utilizing CMIP6-based future weather data when designing and reinforcing water structures in agricultural areas in the future. The results of this study are expected to be used as basic data for utilizing CMIP6-based future weather data.