• Title/Summary/Keyword: small plasmid

Search Result 96, Processing Time 0.027 seconds

Effect of Non-homologous Spacing in Target DNA Sequence on the Frequency of Cloning Based Homologous Recombination (Target DNA 염기서열 내에 존재하는 비상동성 간격이 상동성재조합을 이용한 클로닝 빈도에 미치는 영향)

  • Kim Jae-Woo;Do Eun-Ju;Yoon Se-Lyun;Jeong Yun-Hee;Yoon Young-Ho;Leem Sun-Hee;Sunwoo Yangil;Park In-Ho
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.239-245
    • /
    • 2005
  • Transformation-Associated Recombination (TAR) cloning technique allows selective isolation of chromosomal regions and genes from complex genomes. The procedure requires knowledge of relatively small genomic sequences that reside adjacent to the chromosomal region of interest. This technique involves homologous recombination during yeast spheroplast transformation between genomic DNA and a TAR vector that has 5' and 3' gene targeting sequences. In this study, we examined the effect of non-homologous spacing sequence in target hooks on homologous recombination using a plasmid model system. The efficiency of homologous recombination between the modified his3-TRP1-his3 fragments and HlS3 gene on plasmid were analyzed by the characterization of $Ura^+$ transformants. The numbers of $Ura^+$ transformant showed same level when seven different modified his3-TRP1-his3 fragments were used. But the percentage of positive recombinants. $Trp^+His^-$, dramatically decreased when used the modified his3-TRP1-his3 fragments contained incorrect spacing of nonhomologous region. As a result, we suggest that incorrect spacing inhibits the homologous recombination between target hook and substrate DNA. Therefore, we should consider the correct spacing in target hook when the target hook are used for cloning of orthologue gene.

Comparative Analysis of Aniline Dioxygenase Genes from Aniline Degrading Bacteria, Burkholderia sp. HY1 and Delftia sp. HY99. (Aniline 분해균주 Burkholderia sp. HY1과 Delftia sp. HY99에서 유래된 Aniline Dioxygenases 유전자의 비교 분석)

  • Kahng, Hyung-Yeel;Oh, Kye-Heon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.104-111
    • /
    • 2007
  • In this study, aniline dioxygenase genes responsible for initial catabolism of aniline in Burkholderia sp. HY1 and Delftia sp. HY99 were cloned and the amino acid sequences were comparatively analyzed, which already have been reported as bacteria utilizing aniline as a sole source of carbon and nitrogen, B. sp. HY1 was found to have at least a plasmid, and the plasmld-cured strain, B. sp. HY1-PC obtained using mitomycin C was tested with wild type strain to investigate whether the former maintained the degradability for aniline. This proved that the aniline oxygenase gene from B. sp. HY1 was located in chromosomal DNA, not in plasmid DNA. Aniline dioxygenase small subunits from B. sp. HY1 and D. sp. HY99 were found, based on 146 amino acids, to share 79% similarity. Notably, ado2 genes from B. sp. HY1 and D. sp. HY99 which were found to be terminal dioxygenase of aniline dioxygenase small subunit showed 99% similarity in the deduced amino acid sequences with tdnA2 of Frateuria sp. ANA-18 and danA2 of D. sp. AN3, respectively. Besides, enzyme assay and amino acid sequence analysis of catechol dioxygenase supported the previous report that B. sp. HY1 might occupy ortho-cleavage pathway using catechol 1,2-dioxygenase, while D. sp. HY99 might occupy catechol 2,3-dioxygenase for meta-cleavage pathway.

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF

Expression of Rice Small HSP Enhances Thermotolerance of Escherichia coli under Heat Stress (벼 Small HSP의 발현에 의한 대장균의 고온 stress 하에서의 내성의 증가)

  • Lee, Byung-Hyun;Lee, Hyo-Shin;Won, Sung-Hye;Jo, Jin-Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.17
    • /
    • pp.59-63
    • /
    • 1999
  • A cDNA encoding rice chloroplast small HSP, Oshsp21, was introduced into Escherichia coli using the pET expression vector to analyze the possible function of Oshsp21 under heat stress. We compared the viability of E. coli ${\lambda}BL21$ (DE3) cells transformed with recombinant plasmid containing Oshsp21 with the control E. coli cells transformed with pET28a vector under heat stress after IPTG induction. Upon heat treatment at $50^{\circ}C$, those cells that expressed Oshsp21 showed improved viability compared with control cells. When the cell lysates from E. coli transformants were heated at $55^{\circ}C$, the amounts of proteins denatured in the control and pEhsp21-transformed cells were about 60% and 35% of total cell proteins, respectively. These results indicate that rice chloroplast small HSP function as a molecular chaperone in cells.

  • PDF

Introduction of Thermotolerant Gene into Rice Plant by Agrobacterium Mediated Transformation (Agrobacterium을 이용한 내열성 유전자의 벼로의 형질전환 및 발현)

  • Lee, Byung-Hyun;Lee, Hyo-Shin;Won, Sung-Hye;Jo, Jin-Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.17
    • /
    • pp.39-43
    • /
    • 1999
  • To investigate the function of chloroplast-localized small HSP in rice, the cDNA, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from rice immature embryos were co-cultivated with a A. tumafaciens EHA101 that contained a plasmid, pIHSP21. The efficiency of plant regeneration from the calli co-cultivated with the Agrobacterium was about 30%. PCR and Southern blot analyses using genomic DNA revealed that gene for the chloroplast small HSP was introduced into the genome of rice. Expression of transgene was investigated by northern blot analysis. Results indicate that the transgene, Oshsp21, was constitutively expressed at normal growth temperature.

  • PDF

The Change of Cell-cycle Related Proteins and Tumor Suppressive Effect in Non-small Cell Lung Cancer Cell Line after Transfection of p16(MTS1) Gene (폐암세포에 p16 (MTS1) 유전자 주입후 암생성능의 변화 및 세포주기관련 단백질의 변동에 관한 연구)

  • Kim, Young-Whan;Kim, Jae-Yeol;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.796-805
    • /
    • 1997
  • Background : It is clear that deregulation of cell cycle progression is a hallmark of neoplastic transformation and genes involved in the $G_1$/S transition of the cell cycle are especially frequent targets for mutations in human cancers, including lung cancer. p16 gene product, one of the G1 cell-cycle related proteins, that is recently identified plays an important role in the negative regulation of the the kinase activity of the cyclin dependent kinase (cdk) enzymes. Therefore p16 gene is known to be an important tumor suppressor gene and is also called MTS1 (multiple tumor suppressor 1). No more oncogenes have been reported to be frequently related to multiple different malignancies than the alterations of p16 gene. Especially when it comes to non-small cell lung cancer, there was no expression of p16 in more than 70% of cell lines examined. And also it is speculated that p16 gene could exert a key role in the development of non-small cell lung cancer. This study was designed to evaluate whether p16 gene could be used as a candidate for gene therapy of non-small cell lung cancer. Methods : After the extraction of total RNA from normal fibroblast cell line and subsequent reverse transcriptase reaction and polymerase chain reaction, the amplified p16 cDNA was subcloned into eukaryotic expression plasmid vector, pRC-CMV. The constructed pRC-CMV-p16 was transfected into the NCI-H441 NSCLC cell line using lipofectin. The changes of G1 cell-cycle related proteins were investigated with Western blot analysis and immunoprecipitation after extraction of proteins from cell lysates and tumor suppressive effect was observed by clonogenic assay. Results : (1) p16(-) NCI-H441 cell line transfected with pRC-CMV-p16 showed the formation of p16 : cdk 4 complex and decreased phosphorylated Rb protein, while control cell line did not. (2) Clonogenic assay demonstrated that the number of colony formation was markedly decreased in p16(-) NCI-H441 cell line transfected with pRC-CMV-p16 than the control cell line. Conclusion : It is confirmed that the expression of p16 protein in p16 absent NSCLC cell line with the gene transfection leads to p16 : cdk4 complex formation, subsequent decrease of phosphorylated pRb protein and ultimately tumor suppressive effects. And also it provides the foundation for the application of p16 gene as a important candidate for the gene therapy of NSCLC.

  • PDF

Isolation and Characterization of the Smallest Bacteriophage P4 Derivatives Packaged into P4-Size Head in Bacteriophage P2-P4 System

  • Kim, Kyoung-Jin;Song, Jae-Ho
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.530-536
    • /
    • 2006
  • Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasm ids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size bead, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.

Expression Study of a Recombinant Plasmid containing Dipeptidyl Peptidase-4 Gene in E. coli: A Plausible Application for Celiac Disease Patients to Digest Gluten

  • Lee, Yeonjae;Kang, Ryan;Kwon, Jenna;Jo, Kyuhee;Im, Jungbin;Jung, Sangwook;Lee, DongHyun;Lee, Juhyeon;Lee, Jeong-Sang
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 2018
  • Celiac disease (CD) is an immune-mediated enteropathy of small intestine diagnosed in both childhood and adulthood. CD is caused by gluten, which produces gliadorphin during its digestion. The enzyme dipeptidyl peptidase-4 (DPP4) breaks gliadorphin down nevertheless the last tripeptide remains and eventually inhibits DPP4, thus slowing down its process. Therefore, the idea is to produce an additional DPP4 enzyme which is crucial. Consequently, the functional DPP4 gene was cloned into pCDNA3 intermediate (FLAG+DPP4) vector and finally a recombinant plasmid pSB1C3 (Andersons promoters+FLAG+DPP4) was constructed using synthetic biology. Normally, a DPP4 inhibitor is used as a cure for diabetes. Another important concern was overexpression of DPP4, which might lead to diabetes, accordingly the work was also performed for the regulation of the DPP4 gene expression. In this regard, three types of Anderson promoters (strong, moderate and weak) were utilized to study the control overexpression. This is the first report of idealistic trial for control the exogenous DPP4 gene-expression by molecular biologic tools.

Secretion Characteristics of Foreign Glucoamylase from Recombinant Plasmid-Harboring and Chromosome-Integrated Saccharomyces cerevisiaes (재조합 플라스미드 포함 효모와 염색체 삽입 효모에서의 외래 Glucoamylase의 분비 특성)

  • 차형준;조광명유영제
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.532-540
    • /
    • 1994
  • Secretion efficiency is generally affected by promoter, signal sequence, characteristics of foreign protein and host. Secretion efficiencies of glucoamylase in recombinant plasmid-harboring yeast and chromosome-integrated yeast which had STA signal sequences were 74% and 65% at the 4th day of incubation, respectively. The high secretion efficiencies of the yeasts were obtained due to the fact that the expression levels were not reached at the secretory apparatus capacities of the host yeasts. In both yeasts, most of the intracellular glucoamylase were detected in cytoplasm and small portion (below 10%) of glucoamylase were located in periplasm. The characteristics of secreted heterologous glucoamylase from recombinant Saccharomyces cerevisiaes were investigated by using Western blot analysis. The secreted mature glucoamylase was heterogeneous and its molecular weight was about 200 to 300 kilodalton. The carbohydrate content of mature glucoamylase was higher than 80%, and several bands of about 55 to 65 kilodalton indicate the endoplasmic reticulum forms of intracellular glucoamylase.

  • PDF

Characterization of Two Cryptic Plasmids from Levilactobacillus zymae GU240

  • Le, Huong Giang;Kim, Min Jae;Jeon, Hye Sung;Yoo, Ji Yeon;Kang, Yun Ji;Kim, Tae Jin;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.63-70
    • /
    • 2022
  • Two small cryptic plasmids, pHG1 and pHG2, were isolated from Levilactobacillus zymae (formerly Lactobacillus zymae) GU240 and characterized. pHG1 is 1,814 bp in size with a GC content of 37.4% and contains two open reading frames. orf1 can potentially encode a protein of 101 amino acids (aa) with 99% identity with the copy number control protein of Lacticaseibacillus paracasei. orf2 can potentially encode a protein of 230 aa with 99% identity with a replication protein from multiple species. Six inverted repeats (IR I-VI) and six direct repeats (DR I-VI) were found in pHG1. pHG2 is 2,864 bp in size, with a GC content of 39.6%. pHG2 has two orfs. orf1 might encode a protein with 99% identity with the TrsL transmembrane protein. orf2 might encode a protein with 99% identity with plasmid recombination proteins from lactic acid bacteria. Both pHG1 and pHG2 may be useful as frames for constructing lactic acid bacteria-Escherichia coli shuttle vectors.