• Title/Summary/Keyword: small muscle functions

Search Result 13, Processing Time 0.025 seconds

The Effects of Nature-friendly Fingertips Play Program for the Development Small Muscle Functions and Creative Thinking Abilities of Young Children (자연친화적 손끝놀이프로그램이 유아의 소근육 운동기능 발달과 창의적 사고력에 미치는 효과)

  • Byun, Sang Woo;Seo, Hyun Ah;Han, Hee Jung
    • Korean Journal of Childcare and Education
    • /
    • v.8 no.5
    • /
    • pp.5-24
    • /
    • 2012
  • The purpose of this study was how a nature-friendly fingertips play program with nature affected the development of small muscle functions and creative thinking abilities of young children. The subjects of this study were 28 five year old children. Fourteen of them were from H preschool and the other fourteen were from P preschool in the city of B. The research 'evaluation tool for small muscle motor function development' by Byung Dong Kang(2002) was used to measure the small muscle motor functions of preschool students. The Korean version standardized by Young Chae Kim(2004) was used to measure the development of creative thinking abilities. The study arrived at the following results. First, the nature-friendly fingertips play program affected positively to the development of entire small muscle functions, accuracy, rapidness, and stability for young children. Second, the nature-friendly fingertips play program affected positively to the entire creative thinking abilities, fluency, and resistance to the early conclusion. In conclusion, the nature- friendly fingertips play program affected positively to the development of small motor functions and creative thinking abilities.

Olfactory receptors in non-chemosensory tissues

  • Kang, NaNa;Koo, JaeHyung
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.612-622
    • /
    • 2012
  • Olfactory receptors (ORs) detect volatile chemicals that lead to the initial perception of smell in the brain. The olfactory receptor (OR) is the first protein that recognizes odorants in the olfactory signal pathway and it is present in over 1,000 genes in mice. It is also the largest member of the G protein-coupled receptors (GPCRs). Most ORs are extensively expressed in the nasal olfactory epithelium where they perform the appropriate physiological functions that fit their location. However, recent whole-genome sequencing shows that ORs have been found outside of the olfactory system, suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. The ectopic expressions of ORs and their physiological functions have attracted more attention recently since MOR23 and testicular hOR17-4 have been found to be involved in skeletal muscle development, regeneration, and human sperm chemotaxis, respectively. When identifying additional expression profiles and functions of ORs in non-olfactory tissues, there are limitations posed by the small number of antibodies available for similar OR genes. This review presents the results of a research series that identifies ectopic expressions and functions of ORs in non-chemosensory tissues to provide insight into future research directions.

Electrophysiological and Mechanical Characteristics in Human Ileal Motility: Recordings of Slow Waves Conductions and Contractions, In vitro

  • Ryoo, Seung-Bum;Oh, Heung-Kwon;Moon, Sang Hui;Choe, Eun Kyung;Yu, Sung A;Park, Sung-Hye;Park, Kyu Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.533-542
    • /
    • 2015
  • Little human tissue data are available for slow waves and migrating motor complexes, which are the main components of small bowel motility. We investigated the electrophysiological and mechanical characteristics of human ileal motility, in vitro. Ileum was obtained from patients undergoing bowel resection. Electrophysiological microelectrode recordings for membrane potential changes and mechanical tension recordings for contraction from smooth muscle strips and ileal segments were performed. Drugs affecting the enteric nervous system were applied to measure the changes in activity. Slow waves were detected with a frequency of 9~10/min. There were no cross-sectional differences in resting membrane potential (RMP), amplitude or frequency between outer and inner circular muscle (CM), suggesting that electrical activities could be effectively transmitted from outer to inner CM. The presence of the interstitial cell of Cajal (ICC) at the linia septa was verified by immunohistochemistry. Contractions of strips and segments occurred at a frequency of 3~4/min and 1~2/min, respectively. The frequency, amplitude and area under the curve were similar between CM and LM. In segments, contractions of CM were associated with LM, but propagation varied with antegrade and retrograde directions. Atropine, $N^W$-oxide-L-arginine, and sodium nitroprusside exhibited different effects on RMP and contractions. There were no cross-sectional differences with regard to the characteristics of slow waves in CM. The frequency of contractions in smooth muscle strips and ileal segments was lower than slow waves. The directions of propagation were diverse, indicating both mixing and transport functions of the ileum.

An Analysis of Muscular Activity of Supination According to the Elbow Flexion Angle Excluding the Elbow Flexor Activity of the Long and Short Head of the Biceps Brachii Muscle (팔굽관절 굽힘근 활성을 배제한 위팔두갈래근의 긴갈래와 짧은갈래의 팔굽관절 각도에 따른 뒤침동작의 근활성도 분석)

  • Kim, Jeong-Wook;Park, Min-Chull
    • PNF and Movement
    • /
    • v.19 no.1
    • /
    • pp.147-152
    • /
    • 2021
  • Purpose: This study was conducted to investigate the functional differences of the two heads of the biceps brachii by measuring the functions in supination according to pronation by the angle of the flexion of the elbow joint, except for the activities of the elbow flexors. Methods: This study was conducted with 25 healthy men in their 20s. At a glenohumeral-joint 0˚ flexion posture, angles of flexion of the elbow joint of 0˚, 30˚, 60˚, 90˚, and 120˚ were randomly provided, and they were asked to perform supination and pronation with an elastic band. Using an eight-channel surface electromyogram, the muscle activities of the long and short heads of the biceps brachii were measured. The activities of the short and long heads according to the angle were analyzed using a one-way ANOVA, and as a post-test, LSD was employed. Results: The analysis of the impact of the resistance of the elastic band in supination on the differences in the muscle activities in the short and long heads suggests there was a significant difference between 0˚ and 30˚ (p < 0.05). Conclusion: In supination according to forearm pronation, the long head had greater action in the early flexion posture of the elbow joint, and it is judged that the ratio of the flexion of the elbow joint according to the actions of the biceps brachii was considered small.

Traumatic Abdominal Wall Hernia (TAWH): Repair by using a Prolen Mesh (복부손상으로 생긴 탈장에 Prolene Mesh를 이용한 수술 1례)

  • Park, Seung Yeon;Chung, Min
    • Journal of Trauma and Injury
    • /
    • v.22 no.1
    • /
    • pp.119-122
    • /
    • 2009
  • Traumatic abdominal wall hernia after blunt abdominal trauma is rare. The prevalence of traumatic abdominal wall hernia in published series is approximately 1%. Recently, by the use of computed tomography has increased the number of occult traumatic abdominal wall hernias (TAWH). A 47-year-old woman presented to the emergency room soon after a traffic accident. She was fully conscious and complained of diffuse, dull, abdominal pain. She had a seat belt on at the time of the accident. Initial computed tomography showed that the lower left abdominal wall had a defect and that a part of the small bowel had herniated through the defect. During the operation, we made an incision at the defect site and confirmed the defect. The defect size was about $15{\times}5cm$. The muscle layers were repaired in layers with absorbable sutures. Prolen mesh was layed down and fixed on the site of the repaired muscle defect. After 6 months, hernia had not recurred, and no weakness of the repaired abdominal wall layers was identified. The patient's postoperative body functions were normal.

Distribution of actin and tropomyosin in Cryptosporidium muris (쥐와포자충에서 acin과 tropomyosin의 분포)

  • Jae-Ran YU
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.4
    • /
    • pp.227-234
    • /
    • 1998
  • Actin and tropomyosin of Cryptosporidium muris were localized by immunogold labeling. Two kinds of antibodies for actin labeling were used. The polyclonal antibody to skeletal muscle (chicken back muscle) actin was labeled on the pellicle and cytoplasmic vacuoles of parasites. The feeder organelle has showed a small amount of polyclonal actin antibody labeling as well. Whereas the monoclonal antibody to smooth muscle (chicken gizzard muscle) actin was chiefly labeled on the filamentous cytoplasm of parasites. The apical portion of host gastric epithelial cell cytoplasm was also labeled by smooth muscle actin together. The polyclonal antibody to tropomyosin was much more labeled at C. muris than host cells, so it could be easily identified even with low magnification (${\times}2,000$). The tropomyosin was observed along the pellicle, cytoplasmic vacuoles, and around the nucleus also. The skeletal muscle type actin seems to play a role in various celluar functions with tropomyosin in C. muris; on the other hand, the smooth muscle type actin was located mainly on the filamentous cytoplasm and supported the parasites firm attachment to host cells. Tropomyosin on the pellicle was thought to be able to stimulate the host as a major antigen through continuous shedding out by the escape of sporozoites or merozoites from their mother cells.

  • PDF

A Review of Hand Function (손 기능에 관한 고찰)

  • Lee, Sun-Myung
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.4
    • /
    • pp.155-168
    • /
    • 2002
  • The purpose of study to know hand function in order to prevent disability or handicap. The ability to perform precise refined movements of hand is an important human function. Improvement in object manipulation is common goal of therapist. The ability to manipulate an object in the hand is need for many functional tasks, including writing, handling coins, small objects and ADL skills. Therapists have commonly used hand grip and pinch strengths as baseline measures to evaluate hand function. The patterns of grasps are precision grasp, power grasp, hook grasp, spherical grasp, sylindrical grasp, disc grasp, pinch, three point pinch and tip pinch. And the motion of in-manipulation are finger to palm translation, palm to finger, shift, simple rotation and complex rotation. The hand function are include to evaluate of ROM, sensation, muscle strength of hand. It used to evaluate of decision of effect and suppose of disability and acceptance of vocation. Good evaluation is need to pretreatment and baseline of treatment and help to evaluate of effect on treatment.

  • PDF

Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats

  • Cho, Young-Eun;Lomeda, Ria-Ann R.;Ryu, Sang-Hoon;Sohn, Ho-Yong;Shin, Hong-In;Beattie, John H.;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.1 no.2
    • /
    • pp.113-119
    • /
    • 2007
  • Zn is an essential nutrient that is required in humans and animals for many physiological functions, including immune and antioxidant function, growth, and reproduction. The present study evaluated whether Zn deficiency would negatively affect bone-related enzyme, ALP, and other bone-related minerals (Ca, P and Mg) in rats. Thirty Sprague Dawley rats were assigned to one of the three different Zn dietary groups, such as Zn adequate (ZA, 35 mg/kg), pair fed (PF, 35 mg/kg), Zn deficient (ZD, 1 mg/kg) diet, and fed for 10 weeks. Food intake and body weight were measured daily and weekly, respectively. ALP was measured by spectrophotometry and mineral contents were measured by inductively coupled plasma-mass, spectrophotometer (ICP-MS). Zn deficient rats showed decreased food intake and body weight compared with Zn adequate rats (p<0.05). Zn deficiency reduced ALP activity in blood (RBC, plasma) and the tissues (liver, kidney and small intestine) (p<0.05). Also, Zn deficiency reduced mineral concentrations in rat tissues (Ca for muscle and liver, and Mg for muscle and liver) (p<0.05). The study results imply the requirement of proper Zn nurture for maintaining bone growth and formation.

Study on the fundamentals of the Five Viscera (오장(五臟)의 본(本)에 대한 연구)

  • Tak, Dong-Yul;Kang, Jung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.16 no.2
    • /
    • pp.121-130
    • /
    • 2007
  • In oriental medicine, there is the fundamentals to lead a stirring life, and it is an important matter that make a study of fundamentals for treatment. The su-wen(素問) mentions the fundamentals of sheng(生之本), the fundamentals of qi(氣之本), the fundamentals of feng-cang(封藏之本), the fundamentals of ba-ji(罷極之本) and the fundamentals of cang-lin(倉廩之本). They are terminologies expressing physiological functions of the five viscera - heart, lungs, kidneys, liver and spleen. The five viscera are expressed through face, fur, hair, nail and lips. And the five viscera are closely connected with blood, skin, bone, muscle and flesh. Through the changes of personal appearance, we can recognize those of their internal organs. In oriental medicine, they are called as the cang-xiang(藏象). Heart is the fundamentals of sheng(生), and it is related to spirit, blood and blood vessel. Lungs are the fundamentals of qi(氣), because they master the extensive meaning of qi(氣). Kidneys are the fundamentals of feng-cang(封藏) which means seclusion. Liver is the fundamentals of ba-ji(罷極) that have several view by concept. Spleen, stomach, large and small intestines, paunch and bladder are the fundamentals of cang-lin(倉廩), that is to say, gastrointestinal tract that ingest diet and digest it.

  • PDF

Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis (혈관과 섬유증의 평활근 및 세포외기질 조절에 대한 릴랙신의 다양한 작용기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.175-188
    • /
    • 2022
  • Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin induces vasodilation by inhibiting the contractility of vascular smooth muscles and by increasing the passive compliance of vessel walls through the reduction of ECM components, such as collagen. The primary cellular mechanism whereby relaxin induces arterial vasodilation is mediated by the endothelium-dependent production of nitric oxide (NO) through the activation of RXFP1/PI3K, Akt phosphorylation, and eNOS. In addition, relaxin triggers different alternative pathways to enhance the vasodilation of renal and mesenteric arteries. In small renal arteries, relaxin stimulates the activation of the endothelial MMPs and EtB receptors and the production of VEGF and PlGF to inhibit myogenic contractility and collagen deposition, thereby bringing about vasodilation. Conversely, in small mesenteric arteries, relaxin augments bradykinin (BK)-evoked relaxation in a time-dependent manner. Whereas the rapid enhancement of the BK-mediated relaxation is dependent on IKCa channels and subsequent EDH induction, the sustained relaxation due to BK depends on COX activation and PGI2. The anti-fibrotic effects of relaxin are mediated by inhibiting the invasion of inflammatory immune cells, the endothelial-to-mesenchymal transition (EndMT), and the differentiation and activation of myofibroblasts. Relaxin also activates the NOS/NO/cGMP/PKG-1 pathways in myofibroblasts to suppress the TGF-β1-induced activation of ERK1/2 and Smad2/3 signaling and deposition of ECM collagen.