• Title/Summary/Keyword: small mobile robots

Search Result 69, Processing Time 0.03 seconds

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot (소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석)

  • Sojung Yim;Seongjun Lee;Sang-Min Baek;Seokhaeng Huh;Jaekwan Ryu;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

Real-Time Correction Based on wheel Odometry to Improve Pedestrian Tracking Performance in Small Mobile Robot (소형 이동 로봇의 사람 추적 성능 개선을 위한 휠 오도메트리 기반 실시간 보정에 관한 연구)

  • Park, Jaehun;Ahn, Min Sung;Han, Jeakweon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.124-132
    • /
    • 2022
  • With growth in intelligence of mobile robots, interaction with humans is emerging as a very important issue for mobile robots and the pedestrian tracking technique following the designated person is adopted in many cases in a way that interacts with humans. Among the existing multi-object tracking techniques for pedestrian tracking, Simple Online and Realtime Tracking (SORT) is suitable for small mobile robots that require real-time processing while having limited computational performance. However, SORT fails to reflect changes in object detection values caused by the movement of the mobile robot, resulting in poor tracking performance. In order to solve this performance degradation, this paper proposes a more stable pedestrian tracking algorithm by correcting object tracking errors caused by robot movement in real time using wheel odometry information of a mobile robot and dynamically managing the survival period of the tracker that tracks the object. In addition, the experimental results show that the proposed methodology using data collected from actual mobile robots maintains real-time and has improved tracking accuracy with resistance to the movement of the mobile robot.

Generation of Fuzzy Rules for Cooperative Behavior of Autonomous Mobile Robots

  • Kim, Jang-Hyun;Kong, Seong-Gon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.164-169
    • /
    • 1998
  • Complex "lifelike" behaviors are composed of local interactions of individuals under fundamental rules of artificial life. In this paper, fundamental rules for cooperative group behaviors, "flocking" and "arrangement", of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Fuzzy rules in Sugeno type and their related paramenters are automatically generated from clustering input-output data obtained from the algorithms the group behaviors. Simulations demonstrate the fuzzy rules successfully realize group intelligence of mobile robots.

  • PDF

Arrangement of Autonomous Mobile Robots by the Clustering Algorithm (클러스터링에 의한 자율이동 로봇의 정렬 알고리즘 구현)

  • 김장현;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.79-82
    • /
    • 1997
  • In this paper, group intelligence "arrangement" bahavior of autonomous mobile robots(AMRs) is realized by the fuzzy rules. The fuzzy rules for the arrangement are generated from clustering the input-output data. Simulation shows that a small-number of fuzzy rules successfully realizes the arrangement behavior of AMRs.

  • PDF

Radiation tolerance of a small COTS single board computer for mobile robots

  • West, Andrew;Knapp, Jordan;Lennox, Barry;Walters, Steve;Watts, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2198-2203
    • /
    • 2022
  • As robotics become more sophisticated, there are a growing number of generic systems being used for routine tasks in nuclear environments to reduce risk to radiation workers. The nuclear sector has called for more commercial-off-the-shelf (COTS) devices and components to be used in preference to nuclear specific hardware, enabling robotic operations to become more affordable, reliable, and abundant. To ensure reliable operation in nuclear environments, particularly in high-gamma facilities, it is important to quantify the tolerance of electronic systems to ionizing radiation. To deliver their full potential to end-users, mobile robots require sophisticated autonomous behaviors and sensing, which requires significant computational power. A popular choice of computing system, used in low-cost mobile robots for nuclear environments, is the UP Core single board computer. This work presents estimates of the total ionizing dose that the UP Core running the Robot Operating System (ROS) can withstand, through gamma irradiation testing using a Co-60 source. The units were found to fail on average after 111.1 ± 5.5 Gy, due to faults in the on-board power management circuitry. Its small size and reasonable radiation tolerance make it a suitable candidate for robots in nuclear environments, with scope to use shielding to enhance operational lifetime.

Implementation of the Arrangement Algorithm for Autonomous Mobile Robots (자율 이동 로봇의 정렬 군지능 알고리즘 구현)

  • Kim, Jang-Hyun;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2186-2188
    • /
    • 1998
  • In this paper, Fundamental rules governing group intelligence "arrangement" behavior of multiple number of autonomous mobile robots are represented by a small number of fuzzy rules. Complex lifelike behavior is considered as local interactions between simple individuals under small number of fundamental rules. The fuzzy rules for arrangement are generated from clustering the input-output data obtained from the arrangement algorithm. Simulation shows the fuzzy rules successfully realizes fundamental rules of the flocking group behavior.

  • PDF

Implementation of the Obstacle Avoidance Algorithm of Autonomous Mobile Robots by Clustering (클러스터링에 의한 자율 이동 로봇의 장애물 회피 알고리즘)

  • 김장현;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.504-510
    • /
    • 1998
  • In this paper, Fundamental rules governing group intelligence "obstacle avoidance" behavior of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Complex lifelike behavior is considered as local interactions between simple individuals under small number of fundamental rules. The fuzzy rules for obstacle avoidance are generated from clustering the input-output data obtained from the obstacle avoidance algorithm. Simulation shows the fuzzy rules successfully realizes fundamental rules of the obstacle avoidance behavior.

  • PDF

Developement of communication system for cooperative behavior i collective autonomous mobile robots (자율이동로봇군의 협조행동을 위한 통신시스템의 개발)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.33-45
    • /
    • 1997
  • In this paper, we propsoe a new method of th ecommunication system for cooperative behaviors and works in collective autonomous mobile robots. A communication function among the collective robots is essential to intelligent cooperative works. In genral, global communication is effective for small number of robots. However when the number of robot goes on increasing, this becomes difficult to be realized because of limited communication capacity and increasing amount of information to handle. And also the problems such as communciation interfeence and improper message transmission occur. So we propose local communication system based on infrared sensor to realize the cooperative behavior among robots as the solution of above problem. It is possible to prevent overflow of information and exchange of complex information by fusion sign board model which transmits the information to unspecified robots and message passing model which communicate a specific robot. And we formularize optimal communication range by analysis of information propagation mechanism from the proposed comunication system. At last we verify the effectiveness of the proposed communication system from example of cooperative works.

  • PDF

Neighbor-Referenced Coordination of Multi-robot Formations (다중 로봇의 네이버기준 편대제어)

  • Lee, Geun-Ho;Chong, Nak-Young
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.106-111
    • /
    • 2008
  • This paper presents a decentralized coordination for a small-scale mobile robot teams performing a task through cooperation. Robot teams are required to generate and maintain various geometric patterns adapting to an environment and/or a task in many cooperative applications. In particular, all robots must continue to strive toward achieving the team's mission even if some members fail to perform their role. Toward this end, given the number of robots in a team, an effective coordination is investigated for decentralized formation control strategies. Specifically, all members are required first to reach agreement on their coordinate system and have an identifier (ID) for role assignment in a self-organizing way. Then, employing IDs on individual robots within a common coordinate system, a decentralized neighbor-referenced formation control is realized to generate, keep, and switch between different geometric shapes. This approach is verified using an in-house simulator and physical mobile robots. We detail and evaluate the formation control approach, whose common features include self-organization, robustness, and flexibility.

  • PDF

Path Planning of Swarm Mobile Robots Using Firefly Algorithm (Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획)

  • Kim, Hue-Chan;Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.