• Title/Summary/Keyword: small hole

Search Result 490, Processing Time 0.037 seconds

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

Development of a Robotic System for Measuring Hole Displacement Using Contact-Type Displacement Sensors (접촉식 변위센서를 이용한 홀 변위 측정 로봇시스템 개발)

  • Kang, Hee-Jun;Kweon, Min-Ho;Suh, Young-Soo;Ro, Young-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • For the precision measurement of industrial products, the location of holes inside the products, if they exist, are often selected as feature points. The measurement of hole location would be performed by vision and laser-vision sensor. However, the usage of those sensors is limited in case of big change of light intensity and reflective shiny surface of the products. In order to overcome the difficulties, we have developed a hole displacement measuring device using contact-type displacement sensors (LVDTs). The developed measurement device attached to a robot measures small displacement of a hole by allowing its X-Y movement due to the contact forces between the hole and its own circular cone. The developed device consists of three plates which are connected in series for its own function. The first plate is used for the attachment to an industrial robot with ball-bush joints and springs. The second and third plates allow X-Y direction as LM guides. The bottom of the third plate is designed that various circular cones can be easily attached according to the shape of the hole. The developed system was implemented for its effectiveness that its measurement accuracy is less than 0.05mm.

Atomization Characteristics of Intermittent Multi-Hole Diesel Spray Using Time-Resolved PDPA Data

  • Lee, Jeekuen;Shinjae Kang;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.766-775
    • /
    • 2003
  • The intermittent spray characteristics of a multi-hole diesel nozzle with a 2-spring nozzle holder were investigated experimentally. Without changing the total orifice exit area, the hole number of the multi-hole nozzle varied from 3 (d$\_$n/=0.42 mm) to 5 (d$\_$n/=0.32 mm). The time-resolved droplet diameters of the spray including the SMD (Saute. mean diameter) and the AMD (arithmetic mean diameter), injected intormittently from the multi-hole nozzles into still ambient ai., were measured by using a 2-D PDPA (phase Doppler particle analyze.). The 5-hole nozzle spray shows the smaller spray cone angle, the decreased SMD distributions and the small difference between the SMD and the AMD, compared with that of the 3-hole nozzle spray. From the SMD distributions with the radial distance, the spray structure can be classified into the three regions : (a) the inner region showing the high SMD distribution , (b) the mixing flow region where the shea. flow structure would be constructed : and (c) the outer region formed through the disintegration processes of the spray inner region and composed of fine droplets. Through the SMD distributions along the spray centerline, it reveals that the SMD decreases rapidly after showing the maximum value in the vicinity of the nozzle tip. The SMD remains the constant value near the Z/d$\_$n/=166 and 156.3 for the 3-hole and 5-hole nozzles, which illustrate that the disintegration processes of the 5-hole nozzle spray proceed more rapidly than that of the 3-hole nozzle spray.

A Study on Preventing Cracks at the Small Hole Exit in Ultrasonic Machining Using a Wax Coating (초음파 미세구멍 관통가공에서 왁스 코팅을 이용한 출구크랙 방지에 관한 연구)

  • Li, Hang;Ko, Tae Jo;Baek, Dae Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • Ultrasonic machining (USM) does not involve heating or any electrochemical effects, and subsequently causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials, such as glass or ceramics. However, USM for brittle materials generates cracks on the workpiece while machining, especially at the hole exit with a small diameter. In this study, wax coating was used to deposit wax on the back side of the workpiece to decrease the occurrence of cracks at the exit holes in USM, and it was finally removed with a cleaning process. The experimental results show that this technique is beneficial for restricting the occurrence of cracks in glass or ceramics.

The performance and flow characteristics of a small propeller fan with a back-plate (뒷판이 있는 소형 프로펠러 팬의 성능 및 유동특성)

  • Gang, Sin-Hyeong;Kim, Jin-Gwon;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1491-1500
    • /
    • 1996
  • Unstable performance deterioration was found on the performance curve of a small propeller fan with a back plate. To investigate this phenomenon and the effects of the back-plate on the performance of the fan, performance tests and flow measurement using 3-hole pitot tube were carried out. Measurements showed that when the flow rate is small, the radial flow dominates, and when the flow rate is large, the axial flow dominates. Performance characteristic of the propeller fan changes from radial to axial type as the flow rate increases. Unstable performance changes are the result of type change of the flow through the fan.

Behavior of Fatigue Crack Propagation from Surface Flaw (表面欠陷 에 發생하는 疲勞크랙擧動)

  • 송삼홍;오환섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.150-157
    • /
    • 1985
  • In terms of behavior of fatigue cracks propagated after build-up around the artificial drilled miro-hole, this study has been made of the build-up process of slips and micro cracks, behavior of micro-crack propagation and the definition of fatigue limit under the rotating bending stress with low carbon steel. The results of this study are as follows: (1) The fatigue limit is the repropagating critical stress for the nonpropagating cracks which have grown to some limit around the micro-hole in regard of the magnitude of micro-hole. (2) Behavior of the slips and micro-cracks initiation are occurring simultaneously in front and in rear of micro-hole tips in the view of the rotational direction, regardless of the magnitude of micro-hole. (3) Behavior of fatigue crack propagation is different from magnitude of micro-hole, its behavior is propagation of single crack about respectively large hole, but about respectively small hole, fatigue crack propagated joining phenomena of micro-cracks. (4) The behavior of fatigue fracture is affected by the factor of its defects in the view of magnitude of micro-hole when the diameter of the micro-holes are smaller than 50.mu.m, and this is also affected with the size effect of micro-hole diameter.

A Study on Fracture Behavior in Shear Band during Micro Hole Punching Process (미세 홀 펀칭시 전단 파괴 거동 연구)

  • 유준환;임성한;주병윤;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.230-235
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, stain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu\textrm{m}$, 25 $\mu\textrm{m}$ micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with man holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover, burnish zone, fracture zone and it shows similar fracture behavior in shear band, but? by high strain rate (10$^2$∼ 10$^3$s$\^$-1/) unlike macro hole fabrication and increment of relative grain size several different results are shown.

  • PDF

A Study on Micro-Hole Drilling by EDM (미세구멍의 방전가공에 관한 연구)

  • 윤재웅;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1147-1154
    • /
    • 1990
  • Micro-hole drilling by EDM and production of fine rods for the tool electrode or other purpose have become very important in industry. This paper suggests a new method for production of very fine rods by ultrasonic-assisted chemical machining and describes the machining characteristics of micro-hole drilling by EDM. For fine rods, copper wires of initial diameter of 250.mum are used and successfully machined into a diameter of less than 30.mum with good repeatability. The ultrasonic agitation not only accelerated the material removal rate uniformly, but also produced smooth surfaces of fine rods. To drill the micro-hole, kerosene and pure water is used as a dielectric. From the experiment, water is superior to kerosene with respect to surface roughness of inlet and outlet of hole and machined surface as well as electrode wear. However, due to the electrochemical reaction of water, small pits are remained on the workpiece surface.

The Study on Estimation Fatigue Limit in Induction Surface Hardened S45C Steel (S45C강의 고주파 열처리 표면경화재 피로한도 예측에 관한 연구)

  • 이수진;전형용;성낙원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.134-142
    • /
    • 1998
  • The effects of small hole defect size and effective case depth(ECD) on the four point bending fatigue limit of induction surface hardened S45C steel were investigated the fatigue limit evaluation of hardened materials is very difficult because of relations of the hardness gradient and residual stress. In this study, it was possible to characterize fatigue limit and fatigue life of induction surface hardened S45C steel in terms of the hole defect size and effective case depth(ECD) and quantitative evaluation of the fatigue limit with hole defects use Murakami's evaluation method and the range of evaluated values is a good accuracy compared with results.

  • PDF

Correction of lmpurity Effects on the Characterization of YBCO (YBCO의 특성분석에 있어서 불순물효과의 보정)

  • Ha, Dong-Han;Byon, Sun-Ye;Kim, Yong-Il;Han, Gi-Yeol;Lee, Kyu-Won
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.171-174
    • /
    • 1999
  • We have characterized solid solution Y$_{l-x}Ca_xBa_2Cu_3O_y$ (0${\le}$x${\le}$0.3) materials by measuring the XRD pattern, resistivity and hole concentrations, etc. As Ca concentration increases, T$_c$, is decreased monotonically because the hole concentration on the superconducting plane increases beyond the optimum region in the electronic phase diagram due to the hole transfer from the Cu-O chain to the CuO$_2$ plane. A very small amount of secondary phase have large effects on the analysis of oxygen content and hole concentration etc. The results before the correction of impurity phase are compared with those after the correction.

  • PDF