• 제목/요약/키워드: small grain

검색결과 768건 처리시간 0.029초

입자요소계를 이용한 유한요소 해석 (Finite Element Analysis and Experiments of Milli-Part Forming of Strip Bending Using Grain Element)

  • 구태완;김동진;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.266-273
    • /
    • 2002
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The bending of these components of thin sheets has a typical phenomenon of bulk deformation because of the forming size. The recent trend towards miniaturization causes an increased demand for parts with very small dimensions. The conceptual miniature bending process enables the production of such parts with high productivity and accuracy. The stress values of the flow curve decrease with miniaturization, which means that coarse grained materials show a higher resistance against deformation, when the grain size is in the range of the sheet thickness. In this paper, a new numerical approach is proposed to simulate intergranular milli-structure in forming by the finite element method. The grain element and grain boundary element are introduced to simulate the milli-structure of strip in the bending. The grain element is used to analyze the deformation of individual grain while the grain boundary element is for the investigation on the movement of the grain boundary. Also, the result of the finite element analysis is confirmed by a series of milli-sized forming experiments.

  • PDF

AZ91D 합금의 기계적 성질 및 금형충전성에 미치는 결정립 미세화 원소의 영향 (Effects of Grain Refining Elements on the Mechanical Properties and Mold Filling Ability of AZ91D Alloy)

  • 김정민;박준식
    • 한국주조공학회지
    • /
    • 제31권2호
    • /
    • pp.79-82
    • /
    • 2011
  • Various grain refining alloying elements such as Sr, TiB, and Ca were added to AZ91D and their effects on the mechanical properties and mold filling ability were investigated. The average grain sizes of those alloys were significantly reduced by the small amounts of the alloying elements. Ca addition was the most remarkably effective in reducing the grain size, however it was found to deteriorate the mold filling ability and tensile properties. TiB addition was observed to be the most efficient for both grain refinement and mold filling.

Strength Evaluation of Aluminum Alloy Bolt by Nano-Indentation Hardness Test

  • KUBOTA Yoshihiro;NAKAMURA Tamotsu;KOBAYASHI Mitsuo;FUKUDA Katsumi
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.123-126
    • /
    • 2003
  • A high strength aluminum alloy bolt (A7050, T7 temper treatment) has been developed by the authors. The bolt has a small grain size in the whole area of the bolt because of the large equivalent strain followed by thermo-mechanical treatment. As the bolt made of A 7050 has a risk of stress corrosion cracking, each grain should be strengthened the grain inside than the grain boundary in order to improve the stress corrosion cracking resistance. It has been confirmed that the nano-indentation hardness at each grain inside increased with the increasing equivalent strain by thermo-mechanical treatment processing.

  • PDF

PTC 서어미스타 소자의 소성온도에 따른 Grain의 성장상태 (Grain growth of the PTC thermistor according to the soaking temperature)

  • 박창엽;이영희
    • 전기의세계
    • /
    • 제31권6호
    • /
    • pp.437-444
    • /
    • 1982
  • Although several kinds of conduction mechanism of PTC thermistor have been reported, there were few satisfying results. In this paper, the reported conduction mechanism theories were scrutinized and analyzed by using the experimental results. PTC thermistors for this study were manufactured by adding Sb$\_$2/O$\_$3/, AI$\_$2/O$\_$3/, TiO$\_$2/, and SiO$\_$2/ to BaTiO$\_$3/, and by sintering it at different temperatures. In order to analyze the conduction mechanism, R-T characteristics and its frequency dependence of specimens were measured. And also, the structures of specimens were studied. Especially this paper emphasized the explanation of the resistivity characteristics as the grain growth state of PTC thermistor specimens with respect to soaking temperature. According to the results, the resistivity of PTC thermistor whose grain was formed by semiconducting, was independent to the grain size at room temperature. For small and uniform grain size, the slope of the resistivity near the Curie temperature and the resistivity above the Curie temperature became greater and PTCR effect was improved.

  • PDF

입도조정된 조립재료의 탄성계수에 대한 연구 (Study on Young's Modulus of Coarse Granular Materials with Grain Size Distribution Adjustment)

  • 이성진;이일화;이수형;이진욱
    • 한국지반공학회논문집
    • /
    • 제29권7호
    • /
    • pp.47-55
    • /
    • 2013
  • 조립재료의 요소시험에서 장비에 허용되는 조립재료의 입자크기가 실제 현장에서 사용되는 입자크기에 비해 작은 경우가 종종 발생하기 때문에, 이러한 경우에는 시험에 사용되는 재료의 최대입경을 시험장치의 가용 크기까지 축소시켜 시험을 수행하게 된다. 본 연구에서는 이처럼 최대입경 크기를 축소시켜 입도를 조정했을 때, 저변형률에서의 탄성계수에 미치는 영향을 평가하기 위해 대형반복삼축압축시험을 수행하였다. 본 연구 대상재료의 시험 결과, 입도 조정된 시편들은 원입도 시편의 탄성계수를 과소평가하는 경향이 있었으며, 그 차이는 저변형률에서 더 크게 발생되었다.

곡물의 상온통풍건조 시스템의 시뮬레이션 (Simulation of Drying Grain with Natural Air)

  • 금동혁;최재갑;고학균
    • Journal of Biosystems Engineering
    • /
    • 제4권2호
    • /
    • pp.32-45
    • /
    • 1979
  • The major objective of this study was to develope a computer simulation model to analyze drying process in a deep bed with natural air. The approach used to describe the continuous drying process in a deep bed was to divide the process into many small processes and simulate them by consecutively calculating the changes of grain and air conditions that occurred during short increment of time. Success criterion of the drying system was based on grain deterioration estimated by drymatter decomposition during drying. The results of the experimental test showed that the model satisfactory.

  • PDF

입자크기와 열처리 분위기 변화에 따른 Y-TZP에서의 상안정성 변화 (Effect of Grain Size and Heat-treating Atmosphere on the Phase Stability of Y-TZP)

  • 정태주;안승수;송은화;오경식;이종숙;김영식
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.360-365
    • /
    • 2006
  • The phase stability of tetragonal phase in Y-TZP was investigated in terms of the distribution of grain sizes and heat-treating atmosphere. Y-TZP with various grain sizes were prepared using duration time at $1600^{\circ}C$ as experimental parameter. Accumulated grain size distributions were built from the SEM micrographs and the amount of tetragonal phase were measured using XRD. Both results were compared to determine the critical grain size before and after heat-treatment in vacuum. The critical grain size drastically decreased compared with the small increase of average grain size due to the autocatalytic effect which critically affects the tetragonal to monoclinic phase transformation. After heat-treatment in reductive atmosphere critical grain size relatively increased due to the stabilization of tetragonal phase. The formation of oxygen vacancies during heat-treatment was ascribed to the increase of stability.

P122강 열화재의 소형펀치 크리프 평가 및 미세조직 분석 (Small Punch Creep Evaluation and Microstructure Analysis in Aged P122 Steel)

  • 김범준;김문기;;임병수
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.19-27
    • /
    • 2010
  • This paper investigates the influence of aging time on creep properties via a small punch creep test and evaluates the microstructural change of P122 steel at $600^{\circ}C$. The area fraction of precipitates was quantitatively analyzed to identify the relationship between the creep rupture life and precipitates was coarsening behavior of precipitates along the grain boundaries was also investigated for various aging times. It is found that this coarsening behavior led to a loss of solution hardening and rewulte in a hardness drop and a reduction of creep life.

페라이트 이상 입성장 (Abnormal Grain Growth in Ferrites)

  • Shigeru Ito
    • 자원리싸이클링
    • /
    • 제9권5호
    • /
    • pp.16-21
    • /
    • 2000
  • Generation of abnormally large grains in the microstructure of small grains has been investigated on some ferrites. Some fractions of large grains were observed in the microstructue of sintered ZnFe$_2$O$_4$, Mn-ZnFe$_2$O$_4$, Fe$_3$O$_4$(in $N_2$) and MnFe$_2$O$_4$(in air). On the other hand, the large grains were not observed in $NiFe_2$$O_4$ and $CoFe_2$$O_4$, independent of calcining and sintering conditions. The large grains seem to be generated in such ferrites that are easy to very their compositions or valencies at high temperatures. as the sintering proceeded, the number of large grains was increasing to from a continuous structure consisting of large grains, while the size of large grains did not increase remarkably. In addition, the growth of small grains was also very slow during the generation of the large grains. The large grains appeared be suddenly generated after some induction periods. Avrami equation could be applied to the relation between net volume of large grains and sintering time. Thus, the grain boundaries may be strongly stabilized when the large grains are generated. The large grain is generated y the local activation of the stabilized rain boundaries, which is caused by the variation of composition or valencies during sintering. It is concluded that the essence of the abnormal gain growth is not the generation of abnormally large grains, but the abnormal stabilization and the local activation of he grain boundaries.

  • PDF

$Sb_2O_3$가 첨가된 고전압 ZnO 바리스터의 미세 구조 및 전기적 특성 (The Microstructure and Electrical Characteristics of High Voltage ZnO Varistors with $Sb_2O_3$Additive)

  • 오수홍;정우성;홍경진;이진;김태성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.369-372
    • /
    • 2000
  • ZnO varistor is studied to sintering condition and mixing condition for the improvement to non linear of electrical characteristics. In this paper, ZnO varistor, ZnO-Bi$_2$O$_3$-Y$_2$O$_3$-MnO-Cr$_2$O$_3$-Sb$_2$O$_3$series, is fabricated with Sb$_2$O$_3$mol ratio(0.5~4[mol%]) and sintered at 1250[$^{\circ}C$] for 2 hours. The grain size to Sb$_2$O$_3$moi ratio was measured by fractal mathematics. The ZnO varistors that Sb$_2$O$_3$mot ratio is 1[mol%] were shown small grain size because of spinel phase. The fractal dimension were increased with increasing of Sb$_2$O$_3$mo ratios. The capacitance of ZnO varistors with increasing of Sb$_2$O$_3$additive in voltage-capacitance characteristics was decreased by small grain size.

  • PDF