• Title/Summary/Keyword: small areal estimation

Search Result 9, Processing Time 0.022 seconds

Areal average rainfall estimation method using multiple elevation data of an electromagnetic wave rain gauge (전파강수계의 다중 고도각 자료를 이용한 면적 평균 강우 추정 기법)

  • Lim, Sanghun;Choi, Jeongho;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.417-425
    • /
    • 2020
  • In order to predict and prevent hydrological disasters such as flood, it is necessary to accurately estimate rainfall. In this paper, an areal average rainfall estimation method using multiple elevation observation data of an electromagnetic wave rain gauge is presented. The small electromagnetic rain gauge system is a very small precipitation radar that operates at K-band with dual-polarization technology for very short distance observation. The areal average rainfall estimation method is based on the assumption that the variation in rainfall over the observation range is small because the observation distance and time are very short. The proposed method has been evaluated by comparing with ground instruments such as tipping-bucket rain gauges and a Parsivel. The evaluation results show that the methodology works fairly well for the rainfall events which are shown here.

Small Area Estimation of Unemplyoment Using Kalman Filter Method (KALMAN FILTER기법을 이용한 실업자 수의 소지역 추정)

  • 양영춘;이상은;신민웅
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • In small area estimation, Best Linear Unbaised Predictor(BLUP) can be directly implicated ,specially, in use of the time series estimation. If there are correlations between observations and error terms over the time, Kalman Filter method can be used. Therefore, using kalman Filtering technique small area estimation of total of unemployments are estimated by BLUP. And for the example of this study, Economic Active Population Survey data were used.

A Comparative Analysis of the Accuracy of Areal Precipitation According to the Rainfall Analysis Method of Mountainous Streams

  • Kang, Bo-Seong;Yang, Sung-Kee;Kang, Myung-Soo
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.841-849
    • /
    • 2019
  • The purpose of this study was to evaluate the method of estimating the areal precipitation reflecting the altitude of the mountainous terrain on Jeju Island by comparing and analyzing the areal precipitation using the Thiessen polygon method and the isohyetal method in mountainous streams. In terms of constructing the Thiessen polygon network, rainfall errors occurred in 94.5% and 45.8% of the Thiessen area ratio of the Jeju and Ara stations, respectively. This resulted in large areal precipitation and errors using the isohyetal method at altitudes below 600 m in the target watershed. In contrast, there were small errors in the highlands. Rainfall errors occurred in 18.91% of the Thiessen area ratio of Eorimok, 2.41% of Witseoreum, and 2.84% of Azalea Field because of the altitudinal influence of stations located in the highlands at altitudes above 600 m. Based on the areal precipitation estimation using the Thiessen polygon method, it was considered to be partially applicable to streams on Jeju Island depending on the altitude. However, the method is not suitable for mountainous streams such as the streams on Jeju Island because errors occur with altitude. Therefore, the isohyetal method is considered to be more suitable as it considers the locations of the rainfall stations and the orographic effect and because there are no errors with altitude.

The Estimation of Areal Rainfall Quantiles in Han River Basin (한강유역의 면적 확률강우량 산정에 관한 연구)

  • Kim, Gyeong-Deok;Go, Yeon-U;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2000
  • It is very important to establish sufficiently long and reliable annual maximum rainfall data in estimating areal rainfall quantiles of Han River Basin. The data from 9 gauging stations measured by Korea Meteorological Administration may meet such a requirement, however the number of these data sets is too small to estimate overall areal rainfall quantiles in large basin such as Han River Basin. In order to solve such a problem, the space correlations of many sites' data measured by Korea Ministry of Construction and Transportation and Korea Water Resources Corporation (the number of sites is 59) were used for modification of rainfall measure density. And areal rainfall quantiles according to each sub-basin were estimated based on regression analysis.

  • PDF

Analysis on Spatial Variability of Rainfall in a Small Area (소규모 지역에 대한 강우의 공간변화도 분석)

  • Kim, Jong Pil;Kim, Won;Kim, Dong-Gu;Lee, Chanjoo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.905-913
    • /
    • 2015
  • This study deployed six rain gauges in a small area for a dense network observing rainfall and analyzed the spatial variability of rainfall. They were arranged in a $2{\times}3$ rectangular grid with equal space of 60 m. The rainfall measurements from five gauges were analyzed during the period of 50 days because one was seriously affected by alien substance. The maximum difference in cumulative rainfall from them is approximately 38.5 mm. The correlation coefficients from hourly rainfall time series differ from each other while daily rainfall coincide. The coefficient of variation in hourly rainfall varies up to 224% and that in daily rainfall up to 91%. The results from uncertainty analysis show that with only four rain gauges areal mean rainfall cannot be estimated over 95% accuracy. For reliable flood prediction and effective water management it is required to develop a new technique for the estimation of areal rainfall.

Error analysis of areal mean precipitation estimation using ground gauge precipitation and interpolation method (지점 강수량과 내삽기법을 이용한 면적평균 강수량 산정의 오차 분석)

  • Hwang, Seokhwan;Kang, Narae;Yoon, Jung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1053-1064
    • /
    • 2022
  • The Thiessen method, which is the current area average precipitation method, has serious structural limitations in accurately calculating the average precipitation in the watershed. In addition to the observation accuracy of the precipitation meter, errors may occur in the area average precipitation calculation depending on the arrangement of the precipitation meter and the direction of the heavy rain. When the watershed is small and the station density is sparse, in both simulation and observation history, the Thiessen method showed a peculiar tendency that the average precipitation in the watershed continues to increase and decrease rapidly for 10 minutes before and after the peak. And the average precipitation in the Thiessen basin was different from the rainfall radar at the peak time. In the case where the watershed is small but the station density is relatively high, overall, the Thiessen method did not show a trend of sawtooth-shaped over-peak, and the time-dependent fluctuations were similar. However, there was a continuous time lag of about 10 minutes between the rainfall radar observations and the ground precipitation meter observations and the average precipitation in the basin. As a result of examining the ground correction effect of the rainfall radar watershed average precipitation, the correlation between the area average precipitation after correction is rather low compared to the area average precipitation before correction, indicating that the correction effect of the current rainfall radar ground correction algorithm is not high.

Estimation of Design Flood Discharge by Areal Ratio for Ungauged Basin (면적비를 적용한 미계측유역에서의 설계홍수량 산정방안)

  • Lee, Jiho;Park, Jaebeom;Song, Yangho;Jun, Hwandon;Lee, Jungho
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.335-344
    • /
    • 2017
  • In this study, We proposed a method to estimate the design flood by area ratio in an ungauged basin. For that, the discharge parameters was determined by calibration of observed data at the watershed outlet and then peak flow was estimated by area ratio. In order to verify suggested method, peak flow was compared the observed discharge of the small river basin and the design flood discharge of river implementation projects. The results were summarized as follows. As a result of comparing the discharge by the area ratio and observed discharge, the difference of peak flows were analysed 14 ~ 25%. When the discharge calculated with area ratio of small river was compared with the design flood discharge of river implementation projects, the relative error was analyzed to be less than 20%. It means that suggested method in this study is appropriate.

Evaluation of Spatially Disproportionate Rain Gauge Network for the Correction of Mean-Field Bias of Radar Rainfall: A Case Study of Ganghwa Rain Radar (레이더 강우의 편의 보정을 위한 지역적으로 편중된 우량계망의 평가: 강화 강우레이더의 사례 연구)

  • Yoo, Chul-Sang;Yoon, Jung-Soo;Kim, Byoung-Soo;Ha, Eun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.493-503
    • /
    • 2009
  • Estimation of the mean-field bias of radar rainfall is to determine the difference between the areal means of radar and rain gauge rainfall, where the rain gauge rainfall is assumed to be the truth. To exactly determine this bias, the variance of the difference between two observations must be small enough, thus, enough number of observations is indispensible. So, the problem becomes to determine the number of rain gauges to satisfy the level of variance of the difference between two observations. Especially, this study focuses on the case when the rain gauges are disproportionate spatially. This is the problem for the Ganghwa rain radar for the observation of rainfall within the Imjin river basin and the same problem also occurs when a radar is located in between land and ocean. This study considered the Imjin river basin, and compared two cases when rain gauges are available only within the downstream part, about one third of the whole basin, and over the whole basin. Based on the results derived, the rain gauge density within the downstream part of the Imjin river basin was proposed to secure the same accuracy obtained when the rain gauges are available over the whole Imjin river basin.